
Chapter 11
Car-Following Models based on Driving
Strategies

Ideas are like children: you always love your own the most.
Lothar Schmidt

Abstract The models introduced in this chapter are derived from assumptions about
real driving behavior such as keeping a “safe distance” fromthe leading vehicle,
driving at a desired speed, or preferring accelerations to be within a comfortable
range. Additionally, kinematical aspects are taken into account, such as the quadratic
relation between braking distance and speed. We introduce two examples: The sim-
plified Gipps model, and the Intelligent Driver Model. Both models use the same
input variables as the sensors ofadaptive cruise control(ACC) systems, and pro-
duce a similar driving behavior. Characteristics that are specific to the human nature,
like erroneous judgement, reaction time, and multi-anticipation, are discussed in the
next chapter.

11.1 Model Criteria

The models introduced in this chapter are formally identical to the minimal models
presented in the previous chapter. They are defined by an acceleration functionamic

(see Eq. (10.3)) or a speed functionvmic (see Eq. (10.7)). In contrast to the minimal
models, the acceleration or speed functions encoding the driving behavior should at
least model the following aspects:

1. The acceleration is a strictly decreasing function of thespeed. Moreover, the
vehicle accelerates towards adesired speed v0 if not constrained by other vehicles
or obstacles:

∂amic(s,v,vl )

∂v
< 0, lim

s→∞
amic(s,v0,vl ) = 0 for all vl . (11.1)

2. The acceleration is an increasing function of the distances to the leading vehicle:

∂amic(s,v,vl )

∂s
≥ 0, lim

s→∞

∂amic(s,v,vl )

∂s
= 0 for all vl . (11.2)
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The inequality becomes an equality if other vehicles or obstacles (including “vir-
tual” obstacles such as the stopping line at a red traffic light) are outside the in-
teraction range and therefore do not influence the driving behavior. This defines
thefree-flow acceleration

afree(v) = lim
s→∞

amic(s,v,vl ) =≥ amic(s,v,vl ). (11.3)

3. The acceleration is an increasing function of the speed ofthe leading vehicle.
Together with requirement (1), this also means that the acceleration decreases
(the deceleration increases) with the speed of approach to the lead vehicle (or
obstacle):

∂ ãmic(s,v,∆v)
∂∆v

≤ 0 or
∂amic(s,v,vl )

∂vl
≥ 0, lim

s→∞

∂amic(s,v,vl )

∂vl
= 0. (11.4)

Again, the equality holds if other vehicles (or obstacles) are outside the interac-
tion range.

4. A minimum gap (bumper-to-bumper distance)s0 to the leading vehicle is main-
tained (also during a standstill). However, there is no backwards movement if the
gap has become smaller thans0 by past events:

amic(s,0,vl ) = 0 for all vl ≥ 0, s≤ s0. (11.5)

By virtue of relation (10.11), these requirements (orplausibility conditions) for the
acceleration function naturally imply conditions for the speed functionvmic of mod-
els formulated in terms of coupled maps.

A car-following model meeting these requirements iscompletein the sense that
it can consistently describe all situations that may arise in single-lane traffic. Par-
ticularly, it follows that (i) all vehicle interactions areof finite reach, (ii) following
vehicles are not “dragged along”,

amic(s,v,vl )≤ amic(∞,v,v′l ) = afree(v) for all s,v,vl , andv′l , (11.6)

and (iii) an equilibrium speedve(s) exists, which has the properties already postu-
lated for the optimal-speed function (10.20):

v′e(s)≥ 0, ve(0) = 0, lim
s→∞

ve(s) = v0. (11.7)

This means that the model possesses a unique steady-state flow-density relation, i.e.,
a fundamental diagram.1

These conditions are necessary but not sufficient. For example, when in the car-
following regime (steady-state congested traffic), the time gap to the leader has to
remain within reasonable bounds (say, between 0.5 s and 3 s).Furthermore, the ac-

1 If one were to weaken condition (11.1) to∂amic/∂v≤ 0, it is possible to formulate models that
donot have a fundamental diagram. Such models are proposed in the context of B. Kerner’sthree-
phase theory.
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celeration has to be constrained to a “comfortable” range (e.g.,±2m/s2), or at least,
to physically possible values. Particularly, when approaching the leading vehicle,
the quadratic relation between braking distance and speed has to be taken into ac-
count. Finally, any car-following model should allow instabilities and thus the emer-
gence of “stop-and-go” traffic waves, but should not produceaccidents, i.e., negative
bumper-to-bumper gapss< 0.2

Which of the car-following models introduced in Chapter 10 satisfy the con-
ditions (11.1) – (11.5)?

11.2 Gipps’ Model

Gipps’ model presented here is a modified version of the one described in his orig-
inal publication. It is simplified, but conceptually unchanged. Although it produces
an unrealistic acceleration profile, this model is probablythe simplest complete and
accident-free model that leads to accelerations within a realistic range.

11.2.1 Safe Speed

Accidents are prevented in the model by introducing a “safe speed” vsafe(s,vl ),
which depends on the distance to and speed of the leading vehicle. It is based on
the following assumptions:

1. Braking maneuvers are always executed with constant decelerationb. There is
no distinction between comfortable and (physically possible) maximum deceler-
ation.

2. There is a constant “reaction time”∆ t.
3. Even if the leading vehicle suddenly decelerates to a complete stop (worst case

scenario), the distance gap to the leading vehicle should not become smaller than
a minimum gaps0.3

Condition 1 implies that thebraking distancethat the leading vehicle needs to come
to a complete stop is given by

∆xl =
v2

l

2b
.

2 Traffic-flow models are meant to describenormalconditions, while accidents are almost always
caused byexceptionaldriving mistakes that are not part of normal driving behavior and thus not
part of the intended scope of the model.
3 This condition is not present in the original paper, but is necessary to ensure an accident-free
model in the presence of numerical errors arising from discretization.
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From condition 2 it follows that, in order to come to a complete stop, the driver of
the considered vehicle needs not only his or her braking distancev2/(2b), but also an
additionalreaction distance v∆ t travelled during the reaction time.4 Consequently,
thestopping distanceis given by

∆x= v∆ t +
v2

2b
. (11.8)

Finally, condition 3 is satisfied if the gaps exceeds the required minimum final
values0 by the difference∆x−∆xl between the stopping distance of the considered
vehicle and the breaking distance of the leader:

s≥ s0+v∆ t +
v2

2b
− v2

l

2b
. (11.9)

The speedv for which the equal sign holds (the highest possible speed) defines the
“safe speed”

vsafe(s,vl ) =−b∆ t +
√

b2∆ t2+v2
l +2b(s−s0). (11.10)

11.2.2 Model Equation

The simplified Gipps’ model is defined as an iterated map with the “safe speed” (11.10)
as its main component:

v(t +∆ t) = min[v+a∆ t,v0,vsafe(s,vl )] Gipps’ model. (11.11)

This model equation reflects the following properties:

• The simulation update time step is equal to the reaction time∆ t.
• If the current speed is greater thanvsafe−a ∆ t or v0−a ∆ t, the vehicle will reach

the minimum ofv0 andvsafeduring the next time step.5

• Otherwise the vehicle accelerates with constant acceleration a until either the
safe speed or the desired speed is reached.

11.2.3 Steady-State Equilibrium

The homogeneous steady state impliesv(t +∆ t) = vl = v, thus

4 In contrast to the original publication, we assume the speed to be constant within the reaction
time.
5 Strictly speaking, this means that deceleration(v− vsafe)/∆ t is not restricted tob. In multi-lane
simulations, it can be greater if another vehicle “cuts in” in front of the considered vehicle.
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v= min(v0,vsafe) = min

(

v0,−b∆ t +
√

b2∆ t2+v2+2b(s−s0)

)

,

which yields the steady-state speed-gap relation

ve(s) = max

[

0,min

(

v0,
s−s0

∆ t

)]

(11.12)

and, assuming constant vehicle lengthsl , the familiar “triangular” fundamental dia-
gram

Qe(ρ) = min

(

v0ρ ,
1−ρ leff

∆ t

)

, (11.13)

whereleff = (l + s0). As in the Newell model, the parameter∆ t can be interpreted
in four different ways: (i) As the reaction time introduced in the derivation ofvsafe,
(ii) as the numerical update time step of the actual model equation (11.11), (iii) as a
speed adaption time in Eq. (11.11) (at least, ifv(t +∆ t) is restricted byvsafeor v0),
or (iv) as the “safety time gap”(s−s0)/ve in congested traffic as deduced from the
fundamental diagram (11.12).

Table 11.1 Parameters of the simplified Gipps’ model and typical values in different scenarios.

Parameter Typical Value Typical Value
Highway City Traffic

Desired speedv0 120 km/h 54 km/h
Adaption/reaction time∆ t 1.1 s 1.1 s
Accelerationa 1.5m/s2 1.5m/s2

Decelerationb 1.0m/s2 1.0m/s2

Minimum distances0 3 m 2 m

11.2.4 Model Characteristics

Unlike the minimal models described in the previous chapter, the Gipps’ model
is transparently derived from a few basic assumptions and uses parameters that are
easy to interpret and assign realistic values (Table 11.1).Furthermore, Gipps’ model
is – again, in contrast to the minimal models –robust in the sense that meaningful
results can be produced from a comparatively wide range of parameter values.

Highway traffic. The simulation of the highway scenario (Fig. 11.1, left) produces
more realistic results than the OVM or the Newell model: The speed field in panel (a)
exhibits small perturbations which are caused by vehicles merging from the on-
ramp and grow into stop-and-go waves while propagating upstream. The propaga-
tion velocity ccong= −leff/∆ t is constant and of the order of the empirical value
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Fig. 11.1 Fact sheet of Gipps’ model (11.11),(11.10). Simulation of the two standard scenarios
“highway” (left) and “city traffic” (right) with the parameter values listed in Table 11.1. See Chap-
ter 10.5 for a detailed description of the scenarios.

(≈−15km/h). Furthermore, the wave length (of the order of 1−1.5km) is not too
far away from the empirical values (1.5−3km).

The flow-density diagram in Fig. 11.1(b), obtained from virtual detectors, shows
a strongly scattered cloud of data points in the region of congested traffic, i.e., every-
where to the right of the straight line indicating free traffic. Such a wide scattering
is in agreement with empirical data (cf. Figs. 4.11 and 4.12). By looking at scatter
plots of individual detectors, one observes that detectorsthat are closer to the bot-
tleneck produce data points that are shifted towards greater densities and closer to
the fundamental diagram of steady-state traffic. Moreover,the data points of virtual
detectors positioned inside the region of stationary traffic immediately upstream of
the bottleneck (solid black squares) lie on the fundamentaldiagram itself. This ap-
parent density increase near the outflow region of a congestion, also known aspinch
effect, can be observed empirically. However, the systematic density underestima-
tion, which conspicuously increases with the degree of the scattering of the data
points, suggests that thereal density increase is smaller, or even nonexistent. This
means that the pinch effect is essentially a result of data misinterpretation, or, more
specifically, by estimating the density with the time mean speed instead of the space
mean speed (cf. Section 3.3.1). This interpretation is confirmed by simulation as
will be shown in Fig. 11.5(b) below. We draw an important conclusion that is not
restricted to Gipps’ model (and not even to traffic flow models):
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When using empirical data to assert the accuracy and predictive power of
models, one has to simulate both the actual traffic dynamicsand the process
of data capture and analysis.

City traffic. Compared to the simple models of the previous chapter, the city-traffic
scenario (Fig. 11.1, right column) is closer to reality as well. However, the accel-
eration time-series is unrealistic. By definition, there are only three values for the
acceleration: Zero,a, and−b (cf. Panel (e)). The resulting driving behavior is ex-
cessively “robotic” and the abrupt transitions are unrealistic.

Moreover, Gipps’ model does not differentiate between comfortable and max-
imum deceleration: Assuming thatb in Eq. (11.10) denotes the maximum decel-
eration, the model is accident-free but every braking maneuver is performedvery
uncomfortably with full brakes. On the other hand, when interpretingb as the com-
fortable deceleration and allowing for heterogeneous and/or multi-lane traffic the
model possibly produces accidents if leading vehicles (which might be simulated
using different parameters or even different models) brakeharder thanb.

In summary, Gipps’ model produces good results in view of itssimplicity. Mod-
ified versions of this model are used in several commercial traffic simulators. One
example of such a modification isKrauss’ modelwhich essentially is a stochastic
version of the Gipps model.

11.3 Intelligent Driver Model

The time-continuousIntelligent Driver Model(IDM) is probably the simplest com-
plete and accident-free model producing realistic acceleration profiles and a plausi-
ble behavior in essentially all single-lane traffic situations.

11.3.1 Required Model Properties

As Gipps’ model, the IDM is derived from a list of basic assumptions (first-
principles model). It is characterized by the following requirements:

1. The acceleration fulfills the general conditions (11.1) –(11.5) for a complete
model.

2. The equilibrium bumper-to-bumper distance to the leading vehicle is not less
than a “safe distance”s0+vT wheres0 is a minimum (bumper-to-bumper) gap,
andT the (bumper-to-bumper) time gap to the leading vehicle.

3. An braking strategy!intelligentcontrols how slower vehicles (or obstacles or red
traffic lights) are approached:
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• Under normal conditions, the braking maneuver is “soft”, i.e., the deceleration
increases gradually to a comfortable valueb, and decreases smoothly to zero
just before arriving at a steady-state car-following situation or coming to a
complete stop.

• In a critical situation, the deceleration exceeds the comfortable value until
the danger is averted. The remaining braking maneuver (if applicable) will be
continued with the regular comfortable decelerationb.

4. Transitions between different driving modes (e.g., fromthe acceleration to the
car-following mode) are smooth. In other words, the time derivative of the ac-
celeration function, i.e., thejerk J, is finite at all times.6 This is equivalent to
postulating that the acceleration functionamic(s,v,vl ) (or ãmic(s,v,∆v)) is con-
tinuously differentiable in all three variables. Notice that this postulate is in con-
trast to the action-point models such as theWiedemann Modelwhere acceleration
changes are modeled as a series of discrete jumps.

5. The model should be as parsimonious as possible. Each model parameter should
describe only one aspect of the driving behavior (which is favorable for model
calibration). Furthermore, the parameters should correspond to an intuitive inter-
pretation and assume plausible values.

11.3.2 Mathematical Description

The required properties are realized by the following acceleration equation:

v̇= a

[

1−
(

v
v0

)δ
−
(

s∗(v,∆v)
s

)2
]

IDM. (11.14)

The acceleration of the Intelligent Driver Model is given inthe formãmic(s,v,∆v)
and consists of two parts, one comparing the current speedv to the desired speed
v0, and one comparing the current distances to the desired distances∗. The desired
distance

s∗(v,∆v) = s0+max

(

0,vT+
v∆v

2
√

ab

)

(11.15)

has an equilibrium terms0+vT and adynamical term v∆v/(2
√

ab) that implements
the “intelligent” braking strategy (see Section 11.3.4).7

6 Typical values of a “comfortable” jerk are|J| ≤ 1.5m/s3.
7 The maximum condition in Eq. (11.15) ensures that the conditions (11.1) – (11.5) for model
completeness hold for all situations. Strictly speaking, this condition violates the postulate of a
smooth acceleration function. However, it comes into effect only in two situations: (i) For finite
speeds if the leading car is much faster, (ii) for stopped queued vehicles when the queue starts to
move. The first situation may arise after a cut-in maneuver of a fastervehicle. Sinces≫ s0 for this
case, the resulting discontinuity is small. In the second case, the maximum condition prevents an
overly sluggish start and the associated discontinuous acceleration profile may even be realistic.
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Fig. 11.2 By using intuitive model parameters like those of Gipps’ model or the Intelligent Driver
Model (IDM) we can easily model different aspects of the drivingbehavior (or physical limitations
of the vehicle) with corresponding parameter values.

11.3.3 Parameters

We can easily interpret the model parameters by consideringthe following three
standard situations:

• Whenaccelerating on a free road from a standstill, the vehicle starts with the
maximum accelerationa. The acceleration decreases with increasing speed and
goes to zero as the speed approaches the desired speedv0. The exponentδ con-
trols this reduction: The greater its value, the later the reduction of the acceler-
ation when approaching the desired speed. The limitδ → ∞ corresponds to the
acceleration profile of Gipps’ model whileδ = 1 reproduces the overly smooth
acceleration behavior of the Optimal Velocity Model (10.19).

• Whenfollowing a leading vehicle, the distance gap is approximatively given by
thesafety distance s0+vT already introduced in Section 11.3.1. The safety dis-
tance is determined by the time gapT plus the minimum distance gaps0.

• Whenapproaching slower or stopped vehicles, the deceleration usually does not
exceed the comfortable decelerationb. The acceleration function is smooth dur-
ing transitions between these situations.

Each parameter describes a well-defined property (Fig. 11.2). For example, tran-
sitions between highway and city traffic, can be modeled by solely changing the
desired speed (Table 11.2). All other parameters can be keptconstant, modeling
that somebody who drives aggressively (or defensively) on ahighway presumably
does so in city traffic as well.

Since the IDM has no explicit reaction time and its driving behavior is given
in term of a continuously differentiable acceleration function, the IDM describes
more closely the characteristics of semi-automated driving by adaptive cruise con-
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Table 11.2 Model parameters of the Intelligent Driver Model (IDM) and typical values in different
scenarios (vehicle length 5 m unless stated otherwise).

Parameter Typical Value Typical Value
Highway City Traffic

Desired speedv0 120 km/h 54 km/h
Time gapT 1.0 s 1.0 s
Minimum gaps0 2 m 2 m
Acceleration exponentδ 4 4
Accelerationa 1.0m/s2 1.0m/s2

Comfortable decelerationb 1.5m/s2 1.5m/s2

trol (ACC) than that of a human driver. However, it can easilybe extended to cap-
ture human aspects like estimation errors, reaction times,or looking several vehicles
ahead (see Chapter 12).

In contrast to the models discussed previously, the IDM explicitly distinguishes
between the safe time gapT, the speed adaptation timeτ = v0/a, and the reaction
time Tr (zero in the IDM, nonzero in the extension described in Chapter 12). This
allows us not only to reflect the conceptual difference between ACCs and human
drivers in the model, but also to differentiate between morenuanced driving styles
such as “sluggish, yet tailgating” (high value ofτ = v0/a, low value forT) or “agile,
yet safe driving” (low value ofτ = v0/a, normal value forT, low value forb).8

Furthermore, all these driving styles can be adopted independently by ACC systems
(reaction timeTr ≈ 0, original IDM), by attentive drivers (Tr comparatively small,
extended IDM), and by sleepy drivers (Tr comparatively large, extended IDM).

11.3.4 Intelligent Braking Strategy

The termv∆v/(2
√

ab) in the desired distances∗ (11.15) of the IDM models the
dynamical behavior when approaching the leading vehicle. The equilibrium terms
s0+ vT always affects∗ due to the required continuous transitions from and to the
equilibrium state. Nevertheless, to study the braking strategy itself, we will set these
terms to zero, together with the free acceleration terma[1− (v/v0)

δ ] of the IDM
acceleration equation. When approaching a standing vehicleor a red traffic light
(∆v= v), we then find

v̇=−a

(

s∗

s

)2

=−av2(∆v)2

4abs2
=−

(

v2

2s

)2
1
b
. (11.16)

With thekinematic decelerationdefined as

8 Obviously, the first behavior promotes instabilities which willbe confirmed by the stability anal-
ysis in Chapter 15.
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bkin =
v2

2s
, (11.17)

this part of the acceleration can be written as

v̇=−b2
kin

b
. (11.18)

When braking with decelerationbkin, the braking distance is exactly the distance to
the leading vehicle, thusbkin is the minimum deceleration required for preventing a
collision. With Eq. (11.18), we now understand the self-regulating braking strategy
of the IDM:

• A “critical situation” is defined bybkin being greater than the comfortable de-
celerationb. In such a situation, the actual deceleration iseven strongerthan
necessary,|v̇| = b2

kin/b > bkin. This overcompensation decreasesbkin and thus
helps to “regain control” over the situation.

• In a non-critical situation (bkin < b), the actual deceleration is less than the kine-
matic deceleration,b2

kin/b< bkin. Thus,bkin increases in the course of time and
approaches the comfortable deceleration.

Hence, the braking strategy isdynamically self-regulatingtowards a situation in
which the kinematic deceleration equals the comfortable deceleration. One can show
(see Problem 11.4) that this self-regulation is explicitlygiven by the differential
equation

dbkin

dt
=

vbkin

sb

(

b−bkin
)

. (11.19)

Thus, the kinematic deceleration drifts towards the comfortable deceleration inany
situation.

In the above considerations, we have ignored parts of the IDMacceleration
function. To estimate their effects, the time series of Fig.11.4(e) display the com-
plete IDM dynamics when approaching an initially very distant, standing obstacle
(bkin ≪ b): First, the deceleration increases towards the comfortable deceleration ac-
cording to Eq. (11.19). However, due to the defensive natureof the neglected terms,
the comfortable value is never realized, at least for the first vehicle. Eventually, the
deceleration smoothly reduces until the vehicle stops withexactly the minimum gap
s0 left between itself and the obstacle. The following vehicles experience slightly
larger decelerations than the comfortable ones, but without having to perform any
emergency braking or being in danger of a collision.

Figure 11.3 shows the effects of the self-regulatory braking strategy in a situ-
ation where the vehicle is suddenly forced to stop. Drivers with b = 1m/s2 will
perceive this situation as “critical” (bkin = v2/(2s) = 1.9m/s2) and overcompensate
with even stronger deceleration. In contrast, if the comfortable deceleration is given
by b = 4m/s2, the comfortable deceleration is initially well above the kinematic
deceleration and the simulated driver will brake only weakly, so thatbkin increases.
Again, due to the other terms in the acceleration function, the actual deceleration
will not reach the value of comfortable deceleration.
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Fig. 11.3 Acceleration time-series of approaching the stop line of a red traffic light for different
values of the comfortable deceleration. The initial speed isv= 54km/h. The traffic light switches
to red (at timet = 0) when the vehicle is 60 m away.

Why do “IDM drivers” act in a more anticipatory manner for smaller values of
b? Yet why are very small values ofb (less than about 1m/s2) not meaningful?

Consider the situation of approaching a standing obstacle as described above
and convince yourself that the effect of the dynamical part of s∗ on the ac-
celeration prevails against all other terms. Furthermore,show that these other
terms are negative in nearly all situations, thus making thedriving behavior
more defensive.

11.3.5 Dynamical Properties

The fact sheetof the IDM, Fig. 11.4, shows IDM simulations of the two standard
scenarios “traffic breakdown at a highway on-ramp” and “acceleration and stopping
of a vehicle platoon in city traffic”.

Highway traffic. The speed field in the highway scenario (Fig. 11.4(a)) exhibits
dynamics similar to the one found in Gipps’ model (cf. Fig. 11.1): Stationary con-
gested traffic is found close to the bottleneck, while, further upstream, stop-and-go
waves emerge and travel upstream with a velocity of approximately−15km/h. The
wavelength tends to be smaller than in real stop-and-go traffic, but the empirical
spatiotemporal dynamics are otherwise reproduced very well. The growing stop-
and-go waves in the simulations are caused by a collective instability calledstring
instability which will be discussed in more detail in Chapter 15. As we will see in
this chapter, the IDM is either unstable with respect to stop-and-go waves (string-
unstable) or absolutely stable, depending on the parameters and traffic density. The
model is free of accidents, however, except for very unrealistic parameters under
specific circumstances.
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Fig. 11.4 Fact sheet of the Intelligent Driver Model (11.14). The two standard scenarios “high-
way” (left) and “city traffic” (right) are simulated with parameters as listed in Table 11.2. See
Section 10.5 for a detailed description of the scenarios.

The flow-density diagram of virtual loop detectors in Fig. 11.4(b) reproduces
typical aspects of empirical flow-density data:

• Data points representing free traffic fall on a line, while data points from con-
gested traffic are widely scattered.

• The free-traffic branch is not a perfectly straight line but is slightly curved, espe-
cially towards the maximum flow.

• Near the maximum flow, the points are arranged in a pattern that looks like a
mirror image of the Greek letterλ (inverse-λ form), meaning that for a range
of densities (here≈ 18− 25veh/h), both free and congested traffic states are
possible. Thus, the IDM reproduces the empirically observed bistability and the
resulting hysteresis effects like thecapacity drop(about 300veh/h or 15 % in the
present example).

Comparing the virtual detector data with the real data in Fig. 11.5(a), (c), and (d),
we find almost quantitative agreement of the flow-density, speed-density, and speed-
flow diagrams. Contrary to Gipps’ model, the IDM also reproduces the curvature of
the free-traffic branch correctly. This agreement with the data allows us to scrutinize
the nature of the observed strong scattering of flow-densitydata points correspond-
ing to congested traffic. First, we compare theestimateddensity using the virtual
stationary detector data with thereal spatial density which, of course, is available
in the simulation. The result displayed in Fig. 11.5(b) reminds us that one has to
be very careful when interpreting flow-density data. Moreover, even the scattering
of the data points itself is a matter of the way the data is plotted: While the con-
gested traffic data is much more scattered than the free-flow data in the flow-density
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data in Fig. 11.5(a), both branches show similar scatteringin the speed-flow dia-
gram 11.5(d) – in spite of the fact that both diagrams show thesamedata.

 0

 50

 100

 150

 0  10  20  30  40  50  60  70

V
 (

km
/h

)

ρ (1/km)

Data
IDM

 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50  60  70

Q
 (

1/
h)

ρ (1/km)

Data
IDM

 0

 50

 100

 150

 0  500  1000  1500  2000  2500

V
 (

km
/h

)

Q (1/h)

Data
IDM

 0

 500

 1000

 1500

 2000

 2500

 0  30  60  90  120

Q
 (

1/
h)

ρ (1/km)

Data
IDM, Ground Truth

(c) (d)

(a) (b)

Fig. 11.5 (a) Fundamental diagram, (c) speed-density diagram, and (d) speed-flow diagram show-
ing data from a virtual detector in the highway simulation shownin Fig. 11.4 (positioned 1 km
upstream of the ramp). For comparison, empirical data from a real detector on the Autobahn A5
near Frankfurt, Germany, is shown. Velocities have been calculated using arithmetic means in both
the real data and the simulation data. (b) Flow-density diagramwith the same empirical data but
using the real (local) density for the IDM simulation rather thanthe density derived from the virtual
detectors.

City traffic. In the city traffic simulation (Fig. 11.4(c)-(e)) we see a smooth, realis-
tic acceleration/deceleration profile, except in vehicle platoons with speed close to
v0 where followers do not accelerate up to the desired speed andthus the distance
between the vehicles does not reach a constant value before the braking maneu-
ver begins. This happens because, when approaching the desired speed, the free
acceleration function decreases continuously to zero while the interaction (braking)
terms∗/s remains finite (reaching zero only in the limits→∞). Thus, forv. v0, the
actual steady-state equilibrium distance (where the free acceleration and the interac-
tion terms cancel each other) is significantly larger thans∗(v,0). In the next section,
we will investigate this more closely and propose a solutionin Section 11.3.7.

11.3.6 Steady-State Equilibrium

By postulating ˙v= ∆v= 0 we obtain the condition for the steady-state equilibrium
of the IDM from the acceleration function (11.14):
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1−
(

v
v0

)δ
−
(

s0+vT
s

)2

= 0. (11.20)

For arbitrary values ofδ we can solve this equation in closed form only fors (cf.
Fig. 11.6),

s= se(v) =
s0+vT

√

1−
(

v
v0

)δ
. (11.21)

This yields the equilibrium gapse(v) with the speed being the independent variable
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Fig. 11.6 Microscopic (left) and macroscopic (right) fundamental diagram of the IDM using the
parameters shown in Table 11.2.

(instead of the equilibrium speedve(s) as a function of the gap). Using the micro-
macro relation (10.16),se =

1
ρe

− 1, v = V, andQe = ρeV, we obtain the speed-
density and the fundamental diagrams shown in Fig. 11.6.

Note that due to the continuous transition between free and congested traffic,
the equilibrium gapse(v) is not given bys∗(v,0) = s0+ vT. Instead, forv . v0 it
is much larger which can be seen by looking at the denominatorof Eq. (11.21).
Therefore the fundamental diagram is not a perfect trianglebut rounded close to
the maximum flow. This causes the curvature in the macroscopic speed-density and
flow-density diagrams (Fig. 11.5), but also produces the mentioned unrealistic car-
following behavior in platoons with identical driver-vehicle units.

11.3.7 Improved Acceleration Function

Using the IDM as example, this section shows the scientific modeling process, aim-
ing at eliminating some deficiencies of a model while retaining the good and well-
tested features and keeping the model parsimonious, i.e., adding as few model pa-
rameters as possible.9 The IDM is unrealistic in following aspects:

9 Ideally, no parameters are added as in this example.
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• If the actual speed exceeds the desired speed (e.g., after entering a zone with
a reduced speed limit), the deceleration is unrealistically large, particularly for
large values of the acceleration exponentδ .

• Near the desired speedv0, the steady-state gap (11.21) becomes much greater
thans∗(v,0) = s0+ vT so that the model parameterT loses its meaning as the
desired time gap. This means that a platoon of identical drivers and vehicles
disperses much more than observed. Moreover, not all cars will reach the desired
speed (Fig. 11.4(c,d)).

• If the actual gap is considerably smaller than desired (which may happen if an-
other vehicle cuts too close when changing lanes) the braking reaction to regain
the desired gap is exaggerated as illustrated in Problem 11.3.

We will treat the first two aspects here while the third aspect(which is only relevant
in multi-lane situations) will be deferred to Section 11.3.8.

To improve the behavior forv > v0, we require that the maximum deceleration
must not exceed the comfortable decelerationb if there are no interactions with
other vehicles or obstacles. The parameterδ should retain its meaning also in the
new regime, i.e., leading to smooth decelerations to the newdesired speed for low
values and decelerating more “robotically” for high values. Furthermore, the free
acceleration functionafree(v) should be continuously differentiable, and remain un-
changed forv ≤ v0, i.e., afree(v) = lims→∞ aIDM (s,v,∆v) for v ≤ v0. Probably the
simplest free-acceleration function meeting these conditions is given by

afree(v) =











a

[

1−
(

v
v0

)δ
]

if v≤ v0,

−b
[

1−
( v0

v

)aδ/b
]

if v> v0.

(11.22)

To improve the behavior near the desired speed, we tighten the second condition
in Section 11.3.1 by requiring that the equilibrium gapse(v) = s∗(v,0) should be
strictly equalto s0+vT for v< v0. However, we would like to implement any mod-
ification as conservatively as possible in order to preserveall the other meaningful
properties of the IDM (especially the “intelligent” braking strategy). Thus, changes
should only have an effect

• near the steady-state equilibrium, i.e., ifz(s,v,∆v) = s∗(v,∆v)/s≈ 1,10

• and when driving withv≈ v0 andv> v0.

We can accomplish this by distinguishing between the casesz= s∗(v,∆v)/s< 1
(the actual gap is greater than the desired gap) andz≥ 1. The new condition requires
ãmic = 0 for all input values that satisfyz(s,v,∆v) = 1 andv< v0. The other condi-
tions in Section 11.3.1 and the conditions (11.1) – (11.5) are automatically satisfied
if ∂ ãmic/∂z< 0, and ifãmic(z) is continuously differentiable at the transition point
z= 1. Probably the simplest acceleration function that fulfills all these conditions
for v≤ v0 is given by

10 In fact, this condition is more general since it also includes continuations of the steady state to
nonstationary situations.
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dv
dt

∣

∣

∣

∣

v≤v0

=

{

a(1−z2) z= s∗(v,∆v)
s ≥ 1,

afree

(

1−z(2a)/afree

)

otherwise.
(11.23)

For v> v0, there is no steady-state following distance, and we simplycombine the
free accelerationafree and the interaction accelerationa(1− z2) such that the in-
teraction vanishes forz≤ 1 and the resulting acceleration function is continuously
differentiable:11

dv
dt

∣

∣

∣

∣

v>v0

=

{

afree+a(1−z2) z(v,∆v)≥ 1,
afree otherwise.

(11.24)

This Improved Intelligent Driver Model(IIDM) uses the same set of model param-
eters as the IDM and produces essentially the same behavior except when vehicles
follow each other near the desired speed or when the vehicle is faster than the de-
sired speed. Simulating the standard city traffic scenario with the IIDM shows that
all vehicles in the platoon now accelerate up to the desired speed (Fig. 11.7, left)
while the self-stabilizing braking strategy and the observance of a comfortable de-
celeration are still in effect (Fig. 11.7, right).
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Fig. 11.7 Simulation of the city traffic scenario (left) and the situationshown in Fig. 11.3 (right)
using the Improved Intelligent Driver Model (IIDM) with the parameters listed in Table 11.2.

However, the fundamental diagram is an exact triangle now. Thus, simulating
highway traffic will no longer produce curved free-traffic branches in the flow-
density, speed-flow, and speed-density diagrams (contraryto the unmodified IDM,
cf. Fig. 11.5). Problem 11.6 discusses an alternative causeof this curvature.

11.3.8 Model for Adaptive Cruise Control

While ACC systems only automate the longitudinal driving task, they must also re-
act reasonably if the sensor input variables – the gaps and approaching rate∆v –
change discontinuously as a consequence of “passive” lane changes (another lane-

11 At v= v0 andz> 1, the full acceleration function (11.23), (11.24) is only continuous, but not
differentiable with respect tov. It would require a disproportionate amount of complication to
resolve this special case of little relevance.
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changing vehicle becomes the new leader), and also “active”lane changes (the ACC
driver changes lanes manually). This means, the third of theIDM deficiencies men-
tioned in the previous Section 11.3.7 – overreactions when the gap decreases dis-
continuously by external actions – must be taken care of.

The reason for the overreactions is the intention of the IDM (and IIDM) devel-
opment to be accident-free even in theworst case, in which the driver of the leading
vehicle suddenly brakes to a complete standstill. However,there are situations char-
acterized by low speed differences and small gaps where human drivers rely on the
fact that the drivers of preceding vehicles willnot suddenly initiate full-stop emer-
gency brakings. In fact, they consider such situations onlyas mildly critical. As a
consequence, a more plausible and realistic driving behavior will result when drivers
act according to theconstant-acceleration heuristic(CAH) rather than considering
the worst-case scenario. The CAH is based on the following assumptions:

• The accelerations of the considered and leading vehicle will not change in the
near future (generally a few seconds).

• No safe time gap or minimum distance is required at any given moment.
• Drivers (or ACC systems) react without delay, i.e., with zero reaction time.

For actual values of the gaps, speedv, speedvl of the leading vehicle, and con-
stant accelerations ˙v and v̇l of both vehicles, the maximum acceleration max(v̇) =
aCAH that does not lead to an accident under the CAH assumption is given by

aCAH(s,v,vl , v̇l ) =







v2ãl
v2
l −2sãl

if vl (v−vl )≤−2sãl ,

ãl − (v−vl )
2Θ(v−vl )
2s otherwise.

(11.25)

The effective acceleration ˜al (v̇l ) = min(v̇l ,a) (with the maximum acceleration pa-
rametera) has been used to avoid the situation where leading vehicleswith higher
acceleration capabilities may cause “drag-along effects”of the form (11.6), or other
artefacts violating the general plausibility conditions (11.1) – (11.5). The condition
vl (v− vl ) = vl ∆v≤ −2sv̇l is true if the vehicles have stopped at the time the min-
imum gaps= 0 is reached. The Heaviside step functionΘ(x) (with Θ(x) = 1 if
x ≥ 0, and zero, otherwise) eliminates negative approaching rates∆v for the case
that both vehicles are moving at the timet∗ of least distance. Otherwise,t∗ would
lie in the past.

In order to retain all the “good” properties of the IDM, we will use the CAH
acceleration (11.25) only as anindicator to determine whether the IDM will lead to
unrealistically high decelerations, and modify the acceleration function of a model
for ACC vehicles only in this case. Specifically, the proposed ACC model is based
on following assumptions:

• The ACC acceleration is never lower than that of the IIDM. This is motivated by
the circumstance that the IDM and the IIDM are accident-free, i.e., sufficiently
defensive.

• If both, the IIDM and the CAH, produce the same acceleration,the ACC accel-
eration is the same as well.
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• If the IIDM produces extreme decelerations, while the CAH yields accelera-
tions in the comfortable range (greater than−b), the situation is considered to
be mildly critical, and the resulting acceleration should be betweenaCAH−b and
aCAH. Only for verysmall gaps, the decelerations should be somewhat higher to
avoid an overly reckless driving style.

• If both, the IIDM and the CAH, result in accelerations significantly below−b, the
situation is seriously critical and the ACC acceleration isgiven by the maximum
of the IIDM and CAH accelerations.

• The ACC acceleration should be a continuous and differentiable function of the
IIDM and CAH accelerations. Furthermore, it should meet theconsistency re-
quirements (11.1) – (11.5).

Probably the most simple functional form satisfying these criteria is given by

aACC =

{

aIIDM aIIDM ≥ aCAH,

(1−c)aIIDM +c
[

aCAH +btanh
(aIIDM −aCAH

b

)]

otherwise.
(11.26)

ThisACC modelhas only one additional parameter compared to the IDM/IIDM,
the “coolness factor”c. Forc= 0 one recovers the IIDM whilec= 1 corresponds to
the “pure” ACC model. Since the pure ACC model would produce areckless driving
behavior for very small gaps, a small fraction 1− c of the IIDM is added. It turns
out that a contribution of 1 % (corresponding toc= 0.99) gives a good compromise
between reckless and overly timid behavior in this situation while it is essentially
irrelevant, otherwise.

In contrast to the other models of this section, the ACC modelhas theacceler-
ation v̇l of the leading vehicle as additional exogenous factor (besides the speed,
the speed difference, and the gap). This models a behavior similar to the human
reactions to brake lights, but in a continuous rather than inan off-on way.12

The Figs. 11.8 and 11.9 show the effect of this model improvement: In the mildly
critical situation of Fig. 11.8, a lane-changing car driving at the same speed as the
considered car cuts in front leaving a gap of only 10 m which isless than one third
of the “safe” gaps0+vT = 35.3m. While the IIDM (and IDM) will initiate a short
emergency braking maneuver in this situation, the ACC reflects a relaxed reaction
by braking at about the comfortable deceleration. In contrast, if the situation be-
comes really critical (Fig. 11.9), both the (I)IDM and the ACC model will initiate
an emergency braking.

When implementing all these modifications, one needs to bear in mind that, in
most situations, the ACC model should behave very similarlyto the IDM so as to
retain its well-tested good properties. To verify this, Fig. 11.10 shows the familiar
fact sheetfor the two standard situations. As expected, there is little difference com-
pared to the IDM (and the IIDM) since the modified behavior kicks in only in the
highway scenario, and only at the merging region of the on-ramp.

12 Since the acceleration ˙vl cannot be measured directly, it is obtained by numerical differentiation
of the approaching rate and the speed-changing rate. Care hasto be taken to control the resulting
discretization errors.
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Fig. 11.8 Response of an ACC and an IIDM vehicle (parameters of Table 11.2 and coolness factor
c= 0.99) to the lane-changing maneuver of another vehicle immediately in front of the considered
vehicle. The initial speed of both vehicles is 120 km/h (equal to the desired speed), and the initial
gap is 10 m which is about 30 % of the desired gap. This can be considered as a “mildly critical”
situation.
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Fig. 11.9 Response of an ACC and an IIDM vehicle to a dangerous lane-changing maneuver of
a slower vehicle (speed 90 km/h) immediately in front of the considered vehicle driving initially
at v0 = 120km/h. The decelerations are restricted to 8m/s2. The parameters are according to
Table 11.2 and a coolness factor ofc= 0.99 for the ACC vehicles. The desired speed of the lane-
changing vehicle is reduced to 90 km/h.
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In summary, the ACC model can be considered as a minimal fullyoperative
control model for ACC systems. With minor modifications, it has been implemented
in real cars and tested on test tracks as well as on public roads and highways.
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Fig. 11.10 Fact sheet of the ACC-model. The two standard scenarios “highway” (left) and “city
traffic” (right) are simulated with the parameter values listed in Table 11.2 and the “coolness factor”
c= 0.99. See Section 10.5 for a detailed description of the simulation scenarios.

Problems

11.1. Conditions for the microscopic fundamental diagram
Use the consistency conditions (11.1) – (11.5) to derive theconditions (11.7) that
have to be fulfilled by the steady-state speed-distance relation ve(s) (microscopic
fundamental diagram).

11.2. Rules of thumb for the safe gap and braking distance

1. A common US rule for the safe gap is the following: “Leave one car length for
every ten miles per hour of speed”. Another rule says “Leave atime gap of two
seconds”. Compare these two rules assuming a typical car length of 15 ft. For
which car length are both rules equivalent?

2. In Continental European countries, one learns in drivingschools the following
rule: “The safe gap should be at least half the reading of the speedometer”.
Translate this rule into a safe time gap rule and compare it with the US rule
stated above. Take into account that, in Continental Europe, speed is commonly
expressed in terms of km per hour.
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3. A rule of thumb for the braking distance says “Speed squared and divided by
100”. If speed is measured in km/h, what braking deceleration is assumed by this
rule?

11.3. Reaction to vehicles merging into the lane
A vehicle enters the lane of the considered car causing the gap s to fall short of
the equilibrium gapse by 50 %. Both vehicles drive at the same speed. Find the
resulting (negative) accelerations produced by the simplified Gipps’ model and the
IDM, assuming the parameter values∆ t = 1s,b= 2m/s2, a= 1m/s2, δ = 4, and
v= v0/2= 72km/h for all vehicles. (No other parameter values are needed forthis
problem.)

11.4. The IDM braking strategy
Derive Eq. (11.19) for the explicit description of the self-regulating braking strategy
when approaching a standing obstacle (∆v= v). Assume that the IDM acceleration
can be reduced to the braking term ˙v = −b2

kin/b for this case.Hint: Keep in mind
that ṡ=−∆v.

11.5. Analysis of a microscopic model
Assume a car-following model that is given by the following acceleration equation:

dv
dt

=







a if v< min(v0,vsafe),
0 if v= min(v0,vsafe),
−a otherwise,

vsafe=−aT+
√

a2T2+v2
l +2a(s−s0).

As usual,vl is the speed of the leading vehicle, ands the corresponding bumper-to-
bumper gap.

1. Explain the meaning of the parametersa, s0, v0, andT by examining (i) the accel-
eration on a free road segment, (ii) the driving behavior when following another
vehicle with constant speed and gap, and (iii) the braking maneuver performed
when approaching a standing vehicle.

2. Find the steady-state speedve(s) as a function of the distance assumingv0 =
20m/s, a = 1m/s2, T = 1.6s, ands0 = 3m. Also, sketch the fundamental dia-
gram for vehicles of length 5 m.

3. Assume that a vehicle standing at positionx = 0 for t ≤ 0 accelerates fort > 0
and then stops at a red traffic light atx= 603m. Derive the speed functionv(t)
for this scenario, assuming the parameter valuesv0 = 20m/s,a= 1m/s2, T = 0,
ands0 = 3m. (Hints: The traffic light is modeled by a standing “virtual” vehicle;
the vehicle will reach its desired speed in this scenario.)

11.6. Heterogeneous traffic
For identical vehicles and drivers, the modified IDM with itsstrictly triangular fun-
damental diagram (IIDM) does not produce the pre-breakdownspeed drop observed
in Fig. 11.5. Is it possible to produce the speed drop by introducing a combination
of different desired speeds or the possibility of passing maneuvers?
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11.7. City traffic in the modified IDM (IIDM)
On a road segment with two traffic lights, a number of vehiclesis standing in front of
the first traffic light. When the light turns green, the vehicles accelerate but have to
stop again at the second traffic light. The upper panel shows trajectories of all 15 ve-
hicles and the red lights (horizontal lines). The lower panel shows the corresponding
speeds of the two bold trajectories.
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1. Estimate the capacityC of the free road segment (without traffic lights) by finding
the maximum possible flow.

2. How many vehicles are able to pass the traffic light atx= 0 if the green light is
on for (i) 5 s, (ii) 15 s, or (iii) 40 s? Find appropriateτ0 andβ such thatτ(n) =
τ0+βn is the time the light has to be green to letn vehicles pass.

3. Estimate the velocityccong of the transition “standing traffic”→ “starting to
move” from the shown trajectories.

4. Estimate the IDM parametersv0, leff = l +s0, T = 1/(ρmaxccong), a, andb used
in the simulation. Add appropriate tangents to the speed diagram to find the ac-
celerations.
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Subproblem 3 (emergency braking).At first, we determine the initial distance such
that a driver driving atv1 = 50km/h just manages to stop before hitting the child:

s(0) = sstop(v1) = 25.95m.

Now we consider a speedv2 = 70km/h but the same initial distances(0) = 25.95m
as calculated above. At the end of the reaction time, the child is just

s(Tr) = s(0)−v2Tr = 6.50m

away from the front bumper. Now, the driver would need the additional braking
distancesB(v2) = 23.6m for a complete stop. However, only 6.50 m are available
resulting in a difference∆s= 17.13m. With this information, the speed at collision
can be calculated by solving∆s= (∆s)B(v) = v2/(2bmax) for v, i.e.,

vcoll =
√

2bmax∆s= 16.56m/s= 59.6km/h.

Remark:This problem stems from a multiple-choice question of the theoretical
exam for a German driver’s licence. The official answer is 60 km/h.

Problems of Chapter 11

11.1 Conditions for the microscopic fundamental diagram. The plausibility
condition (11.5) is valid for any speedvl of the leading vehicle. This also includes
standing vehicles where Eq. (11.5) becomesamic(s,0,0) = 0 for s≤ s0. This corre-
sponds to the steady-state conditionve(s) = 0 for s≤ s0.

Conditions (11.1) and (11.2) are valid for any speedvl of the leader as well,
including the steady-state situationvl = v or ∆v= 0. For the alternative acceleration
functionã(s,v,∆v), this means

∂ ã(s,v,0)
∂s

≥ 0,
∂ ã(s,v,0)

∂v
< 0.

Along the one-dimensional manifold of steady-state solutions{ve(s)} for s∈ [0,∞[,
we have ˜a(s,ve(s),0) = 0, so the differential change d ˜a along the equilibrium curve
ve(s) must vanish as well:

dã=
∂ ã(s,ve(s),0)

∂s
ds+

∂ ã(s,ve(s),0)
∂v

v′e(s)ds= 0,

hence

v′e(s) =
−∂ ã(s,v,0)/∂s
∂ ã(s,v,0)/∂v

≥ 0.
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If the leading vehicle is outside the interaction range, we havev′e(s) = 0 (second
condition of Eq. (11.2)). Finally, the condition lim

s→∞
ve(s) = v0 follows directly from

the second part of condition (11.1).

11.2 Rules of thumb for the safe gap and braking distance

Subproblem 1.One mile corresponds to 1.609 km. However, the US rule does not
give explicit values for a vehicle length. Here, we assume 15ft = 4.572m. In any
case, the gaps increases linearly with the speedv, so the time gapT = s/v is inde-
pendent of speed. Implementing this rule, we obtain

T =
s
v
=

15ft
10mph

=
4.572m

16.09km/h
=

4.572m
4.469m/s

= 1.0s.

Notice that, in the final result, we rounded off generously. After all, this is a rule of
thumb and more significant digits would feign a non-existentprecision.7 Notice that
this rule is consistent with typically observed gaps (cf. Fig. 4.8).

Subproblem 2.Here, the speedometer reading is in units of km/h, and the space gap
is in units of meters. Again, the quotient, i.e., the time gapT is constant and given
by (watch out for the units)

T =
s
v
=

1
2m

(

v
km/h

)

v
=

1
2m

km/h
=

0.5h
1000

=
1800s
1000

= 1.8s.

Subproblem 3.The kinematicbraking distanceis s(v) = v2/(2b), so the cited rule
of thumb implies that the braking deceleration does not depend on speed. By solving
the kinematic braking distance forb and inserting the rule, we obtain (again, watch
out for the units)

b=
v2

2s
=

v2

0.02m

(

km
hv

)2

=
50

3.62 m/s2 = 3.86m/s2.

For reference, comfortable decelerations are below 2m/s2 while emergency braking
decelerations on dry roads with good grip conditions can be up to 10m/s2, about
6m/s2 for wet conditions, and less than 2m/s2 for icy conditions. This means, the
above rule could lead to accidents for icy conditions but is okay, otherwise.

11.3 Reaction to vehicles merging into the lane

Reaction for the IDM.For v= v0/2, the IDM steady-state space gap reads

se(v) =
s0+vT

√

1−
(

v
v0

)δ
=

s0+
v0T
2

√

1−
(

1
2

)δ
.

7 There is also a more conservative variant of this rule where one should leave one car length every
five mph corresponding to the “two-second rule”T = 2.0s.
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The prevailing contribution comes from the prescribed timeheadway (fors0 = 2m
and δ = 4, the other contributions only make up about 10 %). This problem as-
sumes that the merging vehicle reduces the gap to the considered follower to half
the steady-state gap,s= se/2= v0T/4, while the speed difference remain zero. The
new IDM acceleration of the follower (witha= 1m/s2 andδ = 4) is therefore

v̇IDM = a

[

1−
(

v
v0

)δ
−
(

s0+vT
s

)2
]

(v=v0/2,s=se/2)
= a

[

1−
(

1
2

)δ
−
(

s0+v0T/2
se/2

)2
]

se(v)=se(v0/2)
= −3a

[

1−
(

1
2

)δ
]

=−45
16

m/s2 =−2.81m/s2.

Reaction for the simplified Gipps’ model.For this model, the steady-state gap in the
car-following regime readsse(v) = v∆ t. Again, at the time of merging, the merging
vehicle has the same speedv0/2 as the follower, and the gap is half the steady-state
gap,s= (v∆ t)/2= v0∆ t/4. The new speed of the follower is restricted by the safe
speedvsafe:

v(t +∆ t) = vsafe=−b∆ t +

√

b2(∆ t)2+
(v0

2

)2
+

bv0∆ t
2

= 19.07m/s.

This results in an effective acceleration
(

dv
dt

)

Gipps
=

v(t +∆ t)−v(t)
∆ t

≈−0.93m/s2.

We conclude that the Gipps’ model describes a more relaxed driver reaction com-
pared to the IDM. Notice that both the IDM and Gipps’ model would generate sig-
nificantly higher decelerations for the case of slower leading vehicles (dangerous
situation).

11.4 The IDM braking strategy. A braking strategy is self-regulating if, dur-
ing the braking process, thekinematically necessary deceleration bkin = v2/(2s)
approaches the comfortable decelerationb. In order to show this, we calculate the
rate of change of the kinematic deceleration (applying the quotient and chain rules
of differentiation when necessary) and set ˙s= −v andv̇= −b2

kin/b= −v4/(4bs2),
afterwards. This eventually gives Eq. (11.19) of the main text:

dbkin

dt
=

d
dt

(

v2

2s

)

=
4vsv̇−2v2ṡ

4s2

=
v3

2s2

(

1− v2

2sb

)

=
vbkin

sb

(

b−bkin
)

,
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11.5 Analysis of a microscopic model

Subproblem 1 (parameters).For interaction-free accelerations,vsafe> v0, sovsafe

is not relevant. Hencev0 denotes the desired speed, anda the absolute value of
the acceleration and deceleration for the casesv< v0 andv> v0, respectively. The
steady-state conditionss= const. andv= vl = ve = const. give

ve = min(v0,vsafe).

Without interaction,vsafe> v0, sove= v0. With interactions, the safe speed becomes
relevant and the above condition yields

ve = vsafe=−aT+
√

a2T2+v2
e+2a(s−s0)

which can be simplified to
s= s0+veT.

Thus,s0 is the minimum gap forv = 0, andT the desired time gap. The model
produces a deceleration−a not only if v > v0 (driving too fast in free traffic) but
also if v > vsafe (driving too fast in congested situations). Furthermore, the model
is symmetrical with respect to accelerations and decelerations. Obviously, it is not
accident free.

Subproblem 2 (steady-state speed).We have already derived the steady-state con-
dition

ve(s) = min

(

v0,
s−s0

T

)

.

Macroscopically, this corresponds to the triangular fundamental diagram

Qe(ρ) = min

(

v0ρ ,
1−ρ leff

T

)

where leff = 1/ρmax = l + s0. The capacity per lane is given byQmax = (T +
leff/v0)

−1 = 1800vehicles/h at a densityρC = 1/(leff + v0T) = 25/km. For fur-
ther properties of the triangular fundamental diagram, seeSection 8.5.

Subproblem 3.The acceleration and braking distances to accelerate from 0to
20m/s or to brake from 20m/s to 0, respectively, are the same:

sa = sb =
v2

0

2a
= 200m.

At a minimum gap of 3 m and the locationxstop= 603m of the stopping line of
the traffic light, the acceleration takes place fromx = 0 to x1 = 200m, and the
deceleration fromx2 = 400m tox3 = 600m. The duration of the acceleration and
deceleration phases isv0/a = 20s while the time to cruise the remaining stretch
of 200 m atv0 amounts to 10 s. This completes the information to mathematically
describe the trajectory:
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x(t) =







1
2at2 t ≤ t1 = 20s,
x1+v0(t − t1) t1 < t ≤ t2 = 30s,
x2+v0(t − t2)− 1

2a(t − t2)2 t2 < t ≤ t3 = 50s,

wheret1 = 20s,t2 = 30s andt3 = 50s.

11.6 Heterogeneous traffic.The simultaneous effects of heterogeneous traffic and
several lanes with lane-changing and overtaking possibilities results in a curved free
part of the fundamental diagram even for models that would display a triangular
fundamental diagram for identical vehicles and drivers (asthe Improved Intelligent
Driver Model, IIDM). This can be seen as follows: For heterogeneous traffic, each
vehicle-driver class has a different fundamental diagram.Particularly, the densityρC

at capacity is different for each class, so a simple weightedaverage of the individual
fundamental diagrams would result in a curved free part and arounded peak. How-
ever, without lane-changing and overtaking possibilities, all vehicles would queue
up behind the vehicles of the slowest class resulting in a straight free part of the fun-
damental diagram with the gradient representing the lowestfree speed.8 So, both
heterogeneity and overtaking possibilities are necessaryto produce a curved free
part of the fundamental diagram.

11.7 City traffic in the improved IDM
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1. For realistic circumstances, the maximum possible flow isgiven by thedynamic
capacity, i.e., the outflow from moving downstream congestion fronts. In our
case, the “congestion” is formed by the queue of standing vehicles behind a traffic
light. Counting the trajectories (horizontal double-arrow in the upper diagram)
yields

C= Qmax≈
9vehicles

20s
= 1620vehicles/h.

8 Even when obstructed, drivers can choose their preferred gap (in contrast to the desired speed), so
the congested branch of the fundamental diagram is curved evenwithout overtaking possibilities.
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2. Counting the trajectories passingx = 0 for times less than 5 s, 15 s, and 40 s
(black bullets in the upper diagram) gives

n(5) = 1, n(15) = 5, n(40) = 15,

respectively. We determineβ by the average time headway after the first vehicles
have passed,

β =
1
C

=
40s−15s

15−5
= 2.5s/vehicles.

We observe, thatβ denotes the inverse of the capacity. The obtained value agrees
with the result of the first subproblem within the “measuringuncertainty” of
one vehicle.9 This also gives theadditional timeuntil the first vehicle passes:
τ0 = 15s− 5β = 2.5s. (Notice that this isnot a reaction time since the IIDM
does not have one.)

3. The propagation velocity of the position of the starting vehicles in the queue is
read off from the upper diagram:

ccong=−100m
20s

=−5m/s=−18km/h.

4. We estimate the desired speed by the maximum speed of the speed profile
(lower diagram):v0 = 15m/s= 54km/h. The effective lengthleff is equal to
the distance between the standing vehicles in the upper diagram:ρmax= 1/leff =
10vehicles/100m= 100vehicles/km, i.e.,leff = 10m. Since the steady state of
this model corresponds to a triangular fundamental diagram, the time gap pa-
rameterT is determined by the propagation speed and the maximum density:
T =−leff/c= 2s. Finally, the maximum accelerationa and the comfortable de-
celerationb can be read off the lower diagram by estimating the maximum and
minimum gradient of the speed profile:

a=
20m/s

10s
= 2m/s2, b=

20m/s
7s

= 2.9m/s2.

Problems of Chapter 12

12.1 Statistical properties of the Wiener process.To determine the expectation
〈w(t)w(t ′)〉 from the given formal solutionw(t) to the stochastic differential equa-
tion of the Wiener process, we insert the formal solution into 〈w(t)w(t ′)〉 carefully
distinguishing the argumentst andt ′ from the formal integration variablest1 andt2.
This gives the double integral

9 One could have calculatedβ as well using the pairs{n(15),n(5)} or {n(40),n(5)} with similar
results.


