Sample Chapter from "Traffic Flow Dynamics" written by M.Treiber and A.Kesting
More information: http://www.traffic-flow-dynamics.org
By courtesy of Springer publisher, http://www.springer.com

Chapter 11

Car-Following Models based on Driving
Strategies

Ideas are like children: you always love your own the most.
Lothar Schmidt

Abstract The models introduced in this chapter are derived from apsons about
real driving behavior such as keeping a “safe distance” ftoenleading vehicle,
driving at a desired speed, or preferring accelerationsetavithin a comfortable
range. Additionally, kinematical aspects are taken intmaat, such as the quadratic
relation between braking distance and speed. We introduzexamples: The sim-
plified Gipps model, and the Intelligent Driver Model. Botlodels use the same
input variables as the sensorsagfaptive cruise controfACC) systems, and pro-
duce a similar driving behavior. Characteristics that aex#ic to the human nature,
like erroneous judgement, reaction time, and multi-apétion, are discussed in the
next chapter.

11.1 Model Criteria

The models introduced in this chapter are formally idemhticéhe minimal models
presented in the previous chapter. They are defined by ateaaiten functionamic
(see Eq.[(T0]3)) or a speed functia (see Eq.[[I017)). In contrast to the minimal
models, the acceleration or speed functions encoding thieglbehavior should at
least model the following aspects:

1. The acceleration is a strictly decreasing function of ¢heed. Moreover, the
vehicle accelerates towardsgasired speedyif not constrained by other vehicles
or obstacles:

98mic(S,V; 1) , , -
—a <0, éirgoam.c(svmw) =0 forally. (11.1)
2. The acceleration is an increasing function of the distane the leading vehicle:
93mic(SUM) o o i QBmiclSVM) _ g foraiy. (11.2)
Js s—0 S
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182 11 Car-Following Models based on Driving Strategies

The inequality becomes an equality if other vehicles oradtss (including “vir-
tual” obstacles such as the stopping line at a red traffid)ligie outside the in-
teraction range and therefore do not influence the driviigabier. This defines
thefree-flow acceleration

afree(V) = ;iggoamic(s7v,v|) =2 amic(S,V\ V). (11.3)

3. The acceleration is an increasing function of the speettiefeading vehicle.
Together with requirement (1), this also means that thelaat®n decreases
(the deceleration increases) with the speed of approadhettetd vehicle (or
obstacle):

0émiC(vaaAV) < O or aamiC(S7VaV|) >0 I|m aamiC(SaV7V|)

0Av - ov S—00 ov =0 (14

Again, the equality holds if other vehicles (or obstacleg)@utside the interac-
tion range.

4. A minimum gap (bumper-to-bumper distansg}o the leading vehicle is main-
tained (also during a standstill). However, there is no bhackls movement if the
gap has become smaller thgyby past events:

amic(s,0,v) =0 forallyy >0, s< <. (11.5)

By virtue of relation[(T10.111), these requirementsgtausibility condition$ for the
acceleration function naturally imply conditions for theeed functiorvyc of mod-
els formulated in terms of coupled maps.

A car-following model meeting these requirementsasnpleten the sense that
it can consistently describe all situations that may amssingle-lane traffic. Par-
ticularly, it follows that (i) all vehicle interactions aw# finite reach, (ii) following
vehicles are not “dragged along”,

amic(s7vav|) S amiC(°°7V7\/|) = afI‘EE(V) for a” SV, Vi, and\/a (116)

and (i) an equilibrium speetk(s) exists, which has the properties already postu-
lated for the optimal-speed functidn (10, 20):

Ve(S) >0, Ve(0) =0, S"_rl]ove(s) = Vo. (11.7)

This means that the model possesses a unique steady-statiefhsity relation, i.e.,
a fundamental diagraﬂm

These conditions are necessary but not sufficient. For ebeamvpen in the car-
following regime (steady-state congested traffic), theetgap to the leader has to
remain within reasonable bounds (say, between 0.5 s and-8ihermore, the ac-

1 If one were to weaken condition (11.1) é@mic/dVv < 0, it is possible to formulate models that
donothave a fundamental diagram. Such models are proposed in theicohB: Kerner'sthree-
phase theory
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celeration has to be constrained to a “comfortable” rangg,(@2 m/s?), or at least,
to physically possible values. Particularly, when apphiag the leading vehicle,
the quadratic relation between braking distance and spagdohbe taken into ac-
count. Finally, any car-following model should allow inisiliities and thus the emer-
gence of “stop-and-go” traffic waves, but should not procamadents, i.e., negative
bumper-to-bumper gapss< oA

Which of the car-following models introduced in Chagtel 1fis$athe con-
ditions (I11.1) -[(11}5)

11.2 Gipps’ Model

Gipps’ model presented here is a modified version of the ogeriteed in his orig-
inal publication. It is simplified, but conceptually unclggad. Although it produces
an unrealistic acceleration profile, this model is probahé/simplest complete and
accident-free model that leads to accelerations withiralstéc range.

11.2.1 Safe Speed

Accidents are prevented in the model by introducing a “sakeed” Vsasd S, Vi),
which depends on the distance to and speed of the leadingleehiis based on
the following assumptions:

1. Braking maneuvers are always executed with constanietatienb. There is
no distinction between comfortable and (physically pds3itmaximum deceler-
ation.

2. There is a constant “reaction timaAt.

3. Even if the leading vehicle suddenly decelerates to a tatmgtop (worst case
scenario), the distance gap to the leading vehicle shouldetmme smaller than
a minimum gasp

Condition 1 implies that thbraking distancéhat the leading vehicle needs to come
to a complete stop is given by
2
v
Ax = L
AT

2 Traffic-flow models are meant to describermal conditions, while accidents are almost always
caused byexceptionaldriving mistakes that are not part of normal driving behaviat #us not
part of the intended scope of the model.

3 This condition is not present in the original paper, but isessary to ensure an accident-free
model in the presence of numerical errors arising from disctatiza
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From condition 2 it follows that, in order to come to a comelstop, the driver of
the considered vehicle needs not only his or her brakingnmlzl{ﬁg), but also an
additionalreaction distance st travelled during the reaction ti onsequently,
thestopping distancés given by

2

\;
AX = VAt + —

> (11.8)

Finally, condition 3 is satisfied if the gapexceeds the required minimum final
valuesy by the differenceAx — Ax between the stopping distance of the considered
vehicle and the breaking distance of the leader:
voov2
> —— . .

s_so+vAt+2b b (11.9)
The speed for which the equal sign holds (the highest possible speefies the
“safe speed”

VeardS. Vi) = —bAt + /2412 12 + 2b(s— 5p). (11.10)

11.2.2 Model Equation

The simplified Gipps’ model is defined as an iterated map wig'safe speed{11.10)
as its main component:

’ v(t +At) = min|v+ aAt, Vo, VsaidS,Vi)]  Gipps’ model.‘ (11.11)

This model equation reflects the following properties:

e The simulation update time step is equal to the reaction fime

e Ifthe current speed is greater thape— a At or vo — a At, the vehicle will reach
the minimum ofvg andvgase during the next time steﬁ).

e Otherwise the vehicle accelerates with constant accaaratuntil either the
safe speed or the desired speed is reached.

11.2.3 Steady-State Equilibrium

The homogeneous steady state impligst At) = vj = v, thus

4 In contrast to the original publication, we assume the speed t@hstant within the reaction
time.

5 Strictly speaking, this means that deceleratior- vsafe) /At is not restricted td. In multi-lane
simulations, it can be greater if another vehicle “cuts in” mnfrof the considered vehicle.
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V= Min(Vo, Vsafe) = Min (vo, —bAt + \/bZAt2 +Vv2+2b(s— so)> ,
which yields the steady-state speed-gap relation

Ve(S) = max[o,min (vo, SZtSO)} (11.12)

and, assuming constant vehicle lendththe familiar “triangular” fundamental dia-
gram

At

wherelett = (I +S0). As in the Newell model, the parametét can be interpreted
in four different ways: (i) As the reaction time introducedthe derivation oVsate

(i) as the numerical update time step of the actual modeatop [T1.11), (iii) as a
speed adaption time in EQ._(11]111) (at least(if+ At) is restricted bysafe OF Vo),

or (iv) as the “safety time gap(s— ) /Ve in congested traffic as deduced from the
fundamental diagranh (I1.112).

Qe(p) = min (vop, 1- p'eﬁ) , (11.13)

Table 11.1 Parameters of the simplified Gipps’ model and typical values fewiht scenarios.

Parameter Typical Value Typical Value

Highway City Traffic
Desired speet 120 km/h 54km/h
Adaption/reaction timé\t 1l1s 1.1s
Acceleratiora 1.5m/ 1.5m/&
Deceleratiorb 1.0m/ 1.0m/
Minimum distancesy 3m 2m

11.2.4 Model Characteristics

Unlike the minimal models described in the previous chaptex Gipps’ model
is transparently derived from a few basic assumptions aad parameters that are
easy to interpret and assign realistic values (Tabld 1Eurjhermore, Gipps’ model
is —again, in contrast to the minimal modelsobustin the sense that meaningful
results can be produced from a comparatively wide rangeraipeter values.

Highway traffic. The simulation of the highway scenario (Fig.11.1, left)darces
more realistic results than the OVM or the Newell model: Tieesl field in panel (a)
exhibits small perturbations which are caused by vehiclesgmg from the on-
ramp and grow into stop-and-go waves while propagatingreast. The propaga-
tion velocity Ccong = —lett/At is constant and of the order of the empirical value
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Fig. 11.1 Fact sheet of Gipps’ modd[ (1111 [).(17].10). Simulation of the standard scenarios
“highway” (left) and “city traffic” (right) with the parametevalues listed in Table_I1.1. See Chap-
ter[10.5 for a detailed description of the scenarios.

(= —15km/h). Furthermore, the wave length (of the order ef 1.5km) is not too
far away from the empirical values.@l— 3km).

The flow-density diagram in Fif.11.1(b), obtained fromuwattdetectors, shows
a strongly scattered cloud of data points in the region ofested traffic, i.e., every-
where to the right of the straight line indicating free taffsuch a wide scattering
is in agreement with empirical data (cf. Figs. 4.11 Bnd14.Bg)looking at scatter
plots of individual detectors, one observes that detedt@sare closer to the bot-
tleneck produce data points that are shifted towards gréatssities and closer to
the fundamental diagram of steady-state traffic. Moredterdata points of virtual
detectors positioned inside the region of stationary traffimediately upstream of
the bottleneck (solid black squares) lie on the fundametitgram itself. This ap-
parent density increase near the outflow region of a corayestiso known apinch
effect can be observed empirically. However, the systematicitjensderestima-
tion, which conspicuously increases with the degree of tiadtaring of the data
points, suggests that thieal density increase is smaller, or even nonexistent. This
means that the pinch effect is essentially a result of dasinieirpretation, or, more
specifically, by estimating the density with the time measespinstead of the space
mean speed (cf. Section_3.8.1). This interpretation is omefi by simulation as
will be shown in Fig[ITBb(b) below. We draw an important doson that is not
restricted to Gipps’ model (and not even to traffic flow mopels
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When using empirical data to assert the accuracy and pnreslipwer of
models, one has to simulate both the actual traffic dynaamcdghe process
of data capture and analysis.

City traffic. Compared to the simple models of the previous chapter, théreiffic
scenario (Figl_I7]1, right column) is closer to reality adlwdowever, the accel-
eration time-series is unrealistic. By definition, there anly three values for the
acceleration: Zerog, and—b (cf. Panel (e)). The resulting driving behavior is ex-
cessively “robotic” and the abrupt transitions are unstigli

Moreover, Gipps’ model does not differentiate between @stable and max-
imum deceleration: Assuming thhtin Eq. [I1.10) denotes the maximum decel-
eration, the model is accident-free but every braking meeeis performedrery
uncomfortably with full brakes. On the other hand, whenriptetingb as the com-
fortable deceleration and allowing for heterogeneousanalti-lane traffic the
model possibly produces accidents if leading vehicles ¢wimight be simulated
using different parameters or even different models) breteer tharb.

In summary, Gipps’ model produces good results in view afiitgplicity. Mod-
ified versions of this model are used in several commeradfi¢rsimulators. One
example of such a modification israuss’ modelwhich essentially is a stochastic
version of the Gipps model.

11.3 Intelligent Driver Model

The time-continuountelligent Driver Model(IDM) is probably the simplest com-
plete and accident-free model producing realistic acagtar profiles and a plausi-
ble behavior in essentially all single-lane traffic sitoas.

11.3.1 Required Model Properties

As Gipps’' model, the IDM is derived from a list of basic asstiops (irst-
principles modél It is characterized by the following requirements:

1. The acceleration fulfills the general conditiohs (11.1(T£.8) for a complete
model.

2. The equilibrium bumper-to-bumper distance to the legdiehicle is not less
than a “safe distance + vT wheresy is a minimum (bumper-to-bumper) gap,
andT the (bumper-to-bumper) time gap to the leading vehicle.

3. Anbraking strategylintelligentontrols how slower vehicles (or obstacles or red
traffic lights) are approached:
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e Under normal conditions, the braking maneuver is “sof€., ithe deceleration
increases gradually to a comfortable vabjend decreases smoothly to zero
just before arriving at a steady-state car-following dituraor coming to a
complete stop.

e In a critical situation, the deceleration exceeds the cotalide value until
the danger is averted. The remaining braking maneuver gifcable) will be
continued with the regular comfortable deceleration

4. Transitions between different driving modes (e.g., fribia acceleration to the
car-following mode) are smooth. In other words, the timavdgive of the ac-
celeration function, i.e., thgerk J, is finite at all time® This is equivalent to
postulating that the acceleration functiapic(s,v,vi) (or mic(s,v,Av)) is con-
tinuously differentiable in all three variables. Noticatlhis postulate is in con-
trast to the action-point models such as\Wiedemann Modelhere acceleration
changes are modeled as a series of discrete jumps.

5. The model should be as parsimonious as possible. EacH perdeneter should
describe only one aspect of the driving behavior (which v@ifable for model
calibration). Furthermore, the parameters should cooms$po an intuitive inter-
pretation and assume plausible values.

11.3.2 Mathematical Description

The required properties are realized by the following aeregion equation:

O ]

The acceleration of the Intelligent Driver Model is giventie formanic(s,v,Av)
and consists of two parts, one comparing the current speéedhe desired speed
Vo, and one comparing the current distasde the desired distane®. The desired
distance

IDM. (11.14)

VAV
s'(v,Av) = s+ max| O,vT + 11.15
(v4V) = 5o ( . ﬁb) (11.15)

has an equilibrium terrsy +vT and adynamical term $v/(2y/ab) that implements
the “intelligent” braking strategy (see Section 11.814).

6 Typical values of a “comfortable” jerk atd| < 1.5m/s>.

7 The maximum condition in EqI{ILIL5) ensures that the conditidd1) —[Z15) for model
completeness hold for all situations. Strictly speaking, thisd@@n violates the postulate of a
smooth acceleration function. However, it comes into effe¢y entwo situations: (i) For finite
speeds if the leading car is much faster, (ii) for stopped queebithes when the queue starts to
move. The first situation may arise after a cut-in maneuver of a fastecle. Sinces>> s, for this
case, the resulting discontinuity is small. In the second case, tRenma condition prevents an
overly sluggish start and the associated discontinuous accéetepaibfile may even be realistic.
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Fig. 11.2 By using intuitive model parameters like those of Gipps’ model erltttelligent Driver
Model (IDM) we can easily model different aspects of the driviiedpavior (or physical limitations
of the vehicle) with corresponding parameter values.

11.3.3 Parameters

We can easily interpret the model parameters by considéh@dollowing three
standard situations:

e Whenaccelerating on a free road from a standstilhe vehicle starts with the

maximum acceleration. The acceleration decreases with increasing speed and

goes to zero as the speed approaches the desiredgpddwt exponend con-
trols this reduction: The greater its value, the later tliuotion of the acceler-
ation when approaching the desired speed. The Bmit  corresponds to the
acceleration profile of Gipps’ model whik&= 1 reproduces the overly smooth
acceleration behavior of the Optimal Velocity Model (10).19

Whenfollowing a leading vehiclethe distance gap is approximatively given by
the safety distancegstvT already introduced in Section I1.B.1. The safety dis-
tance is determined by the time g@pplus the minimum distance gap.
Whenapproaching slower or stopped vehicl#se deceleration usually does not
exceed the comfortable deceleratlmrThe acceleration function is smooth dur-

ing transitions between these situations.

Each parameter describes a well-defined property [Fig)) JAa2 example, tran-
sitions between highway and city traffic, can be modeled bglpg@hanging the
desired speed (Table_T1.2). All other parameters can bedmstant, modeling
that somebody who drives aggressively (or defensively) bighway presumably
does so in city traffic as well.

Since the IDM has no explicit reaction time and its drivindhéeor is given
in term of a continuously differentiable acceleration fiioie, the IDM describes
more closely the characteristics of semi-automated dyibiyn adaptive cruise con-
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Table 11.2 Model parameters of the Intelligent Driver Model (IDM) angigal values in different
scenarios (vehicle length 5 m unless stated otherwise).

Parameter Typical Value Typical Value
Highway City Traffic
Desired speet 120 km/h 54 km/h
Time gapT 1.0s 1.0s
Minimum gapso 2m 2m
Acceleration exponerd 4 4
Acceleratiora 1.0m/ 1.0m/s?
Comfortable deceleration 1.5m/& 1.5m/&

trol (ACC) than that of a human driver. However, it can eabityextended to cap-
ture human aspects like estimation errors, reaction tiordepking several vehicles
ahead (see Chapfer]12).

In contrast to the models discussed previously, the IDMieitlyl distinguishes
between the safe time gap the speed adaptation tinte= vp/a, and the reaction
time T, (zero in the IDM, nonzero in the extension described in CédpR). This
allows us not only to reflect the conceptual difference betwACCs and human
drivers in the model, but also to differentiate between nraranced driving styles
such as “sluggish, yet tailgating” (high value®of= vp/a, low value forT) or “agile,
yet safe driving” (low value off = vp/a, normal value forT, low value forb)E
Furthermore, all these driving styles can be adopted intligely by ACC systems
(reaction timeT; = 0, original IDM), by attentive driversTf comparatively small,
extended IDM), and by sleepy driver comparatively large, extended IDM).

11.3.4 Intelligent Braking Strategy

The termvAv/(2v/ab) in the desired distance (II.15) of the IDM models the
dynamical behavior when approaching the leading vehidie dquilibrium terms
S+ VT always affects® due to the required continuous transitions from and to the
equilibrium state. Nevertheless, to study the brakingagraitself, we will set these
terms to zero, together with the free acceleration tafin- (v/vo)°] of the IDM
acceleration equation. When approaching a standing vebictered traffic light
(Av =), we then find

. s\ adAv)?E [V 21
V——a<s) ——mz—‘(25> b (11.16)

With thekinematic deceleratiodefined as

8 Obviously, the first behavior promotes instabilities which Wil confirmed by the stability anal-
ysis in Chaptel 5.
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V2

bin = > (11.17)
this part of the acceleration can be written as

. bZ.

V= —%. (11.18)

When braking with deceleratidm,, the braking distance is exactly the distance to
the leading vehicle, thus, is the minimum deceleration required for preventing a
collision. With Eq. [I1.I8), we now understand the selfutating braking strategy
of the IDM:

e A “critical situation” is defined byby, being greater than the comfortable de-
celerationb. In such a situation, the actual deceleratioreven strongethan
necessaryyv| = bﬁin /b > byin. This overcompensation decreadgg and thus
helps to “regain control” over the situation.

e In a non-critical situationk, < b), the actual deceleration is less than the kine-
matic deceleratiorbﬁin/b < byin. Thus,byin increases in the course of time and
approaches the comfortable deceleration.

Hence, the braking strategy dynamically self-regulatingowards a situation in
which the kinematic deceleration equals the comfortabtelgeation. One can show
(see Probleri T11.4) that this self-regulation is explicglyen by the differential

equation
dbk' VbK'
dt'” = Sk;” (b— byin)- (11.19)

Thus, the kinematic deceleration drifts towards the cotafile deceleration iany
situation.

In the above considerations, we have ignored parts of the Hakkleration
function. To estimate their effects, the time series of Ef4(e) display the com-
plete IDM dynamics when approaching an initially very didtastanding obstacle
(bkin < b): First, the deceleration increases towards the comflertidreleration ac-
cording to Eq.[(T1.79). However, due to the defensive naifitiee neglected terms,
the comfortable value is never realized, at least for thevehicle. Eventually, the
deceleration smoothly reduces until the vehicle stops itittly the minimum gap
S left between itself and the obstacle. The following veldataperience slightly
larger decelerations than the comfortable ones, but withaving to perform any
emergency braking or being in danger of a collision.

Figure[IIB shows the effects of the self-regulatory braldtrategy in a situ-
ation where the vehicle is suddenly forced to stop. Driveith W = 1 m/s? will
perceive this situation as “criticalbg, = v2/(2s) = 1.9m/s?) and overcompensate
with even stronger deceleration. In contrast, if the cotate deceleration is given
by b = 4m/s?, the comfortable deceleration is initially well above theematic
deceleration and the simulated driver will brake only wgagb thathy, increases.
Again, due to the other terms in the acceleration functiba,dctual deceleration
will not reach the value of comfortable deceleration.
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Fig. 11.3 Acceleration time-series of approaching the stop line of ana&fid light for different
values of the comfortable deceleration. The initial spead=s54 km/h. The traffic light switches
to red (at time = 0) when the vehicle is 60 m away.

Why do “IDM drivers” act in a more anticipatory manner for stealvalues of
b? Yet why are very small values bfless than about 1 /is?) not meaningful?

Consider the situation of approaching a standing obstactieacribed above
and convince yourself that the effect of the dynamical pait‘oon the ac-
celeration prevails against all other terms. Furthermsiiey that these other
terms are negative in nearly all situations, thus makingdting behavior
more defensive.

11.3.5 Dynamical Properties

Thefact sheebf the IDM, Fig.[I1.%, shows IDM simulations of the two stardia
scenarios “traffic breakdown at a highway on-ramp” and “taregion and stopping
of a vehicle platoon in city traffic”.

Highway traffic. The speed field in the highway scenario (Fig. 11.4(a)) ethibi
dynamics similar to the one found in Gipps’ model (cf. FFig. 1)1 Stationary con-
gested traffic is found close to the bottleneck, while, ferthpstream, stop-and-go
waves emerge and travel upstream with a velocity of appratéim—15km/h. The
wavelength tends to be smaller than in real stop-and-géiciréiut the empirical
spatiotemporal dynamics are otherwise reproduced verly iMeé growing stop-
and-go waves in the simulations are caused by a collectstability calledstring
instability which will be discussed in more detail in Chadtet 15. As wd séke in
this chapter, the IDM is either unstable with respect to stng-go waves (string-
unstable) or absolutely stable, depending on the parasnatet traffic density. The
model is free of accidents, however, except for very unséalparameters under
specific circumstances.
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Fig. 11.4 Fact sheet of the Intelligent Driver Mod€[ (11]114). The twans@rd scenarios “high-
way” (left) and “city traffic” (right) are simulated with pararees as listed in Table_11.2. See
Sectior 105 for a detailed description of the scenarios.

The flow-density diagram of virtual loop detectors in Hig.Z(b) reproduces
typical aspects of empirical flow-density data:

e Data points representing free traffic fall on a line, whil¢adpoints from con-
gested traffic are widely scattered.

e The free-traffic branch is not a perfectly straight line mslightly curved, espe-
cially towards the maximum flow.

e Near the maximum flow, the points are arranged in a patternldlo&s like a
mirror image of the Greek lettex (inverseA form), meaning that for a range
of densities (herex 18— 25velyh), both free and congested traffic states are
possible. Thus, the IDM reproduces the empirically obsghistability and the
resulting hysteresis effects like thepacity drop(about 300 vejh or 15 % in the
present example).

Comparing the virtual detector data with the real data in[Elg8(a), (c), and (d),
we find almost quantitative agreement of the flow-densityesipdensity, and speed-
flow diagrams. Contrary to Gipps’ model, the IDM also reprogiithe curvature of
the free-traffic branch correctly. This agreement with thdllows us to scrutinize
the nature of the observed strong scattering of flow-derlsity points correspond-
ing to congested traffic. First, we compare #stimateddensity using the virtual
stationary detector data with thmeal spatial density which, of course, is available
in the simulation. The result displayed in Fig. 11.5(b) neds us that one has to
be very careful when interpreting flow-density data. Moexpeven the scattering
of the data points itself is a matter of the way the data ist@tbtWhile the con-
gested traffic data is much more scattered than the free-#avid the flow-density
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data in Fig[IIb(a), both branches show similar scattarirfye speed-flow dia-
gramZ1.5(d) — in spite of the fact that both diagrams shovsémeedata.
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Fig. 11.5 (a) Fundamental diagram, (c) speed-density diagram, and (d)-fpeediagram show-
ing data from a virtual detector in the highway simulation shawirig.[I1.4 (positioned 1km
upstream of the ramp). For comparison, empirical data from a egattbr on the Autobahn A5
near Frankfurt, Germany, is shown. Velocities have been lzdtmliusing arithmetic means in both
the real data and the simulation data. (b) Flow-density diagr@mthe same empirical data but
using the real (local) density for the IDM simulation rather thi@ndensity derived from the virtual
detectors.

City traffic. In the city traffic simulation (Fid_1114(c)-(e)) we see a @it realis-
tic acceleration/deceleration profile, except in vehidigons with speed close to
Vo Where followers do not accelerate up to the desired speedhaisdhe distance
between the vehicles does not reach a constant value bé&reraking maneu-
ver begins. This happens because, when approaching thedispieed, the free
acceleration function decreases continuously to zeroewhé interaction (braking)
terms’ /sremains finite (reaching zero only in the limsit> ). Thus, forv < vp, the
actual steady-state equilibrium distance (where the fteelaration and the interac-
tion terms cancel each other) is significantly larger tsigm 0). In the next section,
we will investigate this more closely and propose a soluitio8ectiorl 11.3]7.

11.3.6 Steady-State Equilibrium

By postulatingv’= Av = 0 we obtain the condition for the steady-state equilibrium
of the IDM from the acceleration function (11114):
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1—<V)6—(S°+VT>2:0. (11.20)

Vo S

For arbitrary values 0d we can solve this equation in closed form only fofcf.

Fig.[I1.6), o T

This yields the equilibrium gag:(v) with the speed being the independent variable

S=se(V) = (11.21)

120 f ) ) ) ) ) ) | 2500 [
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N E 1000 |

20t Freeway traffic L 500 /.- Freeway traffic

. Citytaffic e ol . Ciytafiic -
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Gap s (m) Density p (veh/km)

Fig. 11.6 Microscopic (left) and macroscopic (right) fundamental diagiaf the IDM using the
parameters shown in Tatfle I1.2.

(instead of the equilibrium speed(s) as a function of the gap). Using the micro-
macro relation[{10.16)s = i —1,v=V, andQe = pV, we obtain the speed-
density and the fundamental diagrams shown in[Figl 11.6.

Note that due to the continuous transition between free amgested traffic,
the equilibrium gapse(v) is not given bys*(v,0) = s+ VT. Instead, fov < vp it
is much larger which can be seen by looking at the denomiraftéq. (11.21).
Therefore the fundamental diagram is not a perfect triabgterounded close to
the maximum flow. This causes the curvature in the macrosagaed-density and
flow-density diagrams (Fi@._11.5), but also produces thetimeed unrealistic car-
following behavior in platoons with identical driver-veke units.

11.3.7 Improved Acceleration Function

Using the IDM as example, this section shows the scientifidetiog process, aim-
ing at eliminating some deficiencies of a model while retairthe good and well-
tested features and keeping the model parsimonious, deéingas few model pa-
rameters as possit&The IDM is unrealistic in following aspects:

9 |deally, no parameters are added as in this example.
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e If the actual speed exceeds the desired speed (e.g., afeingna zone with
a reduced speed limit), the deceleration is unrealistidatige, particularly for
large values of the acceleration exponént

e Near the desired speed, the steady-state gap (11121) becomes much greater
thans'(v,0) = s+ VT so that the model paramet€rloses its meaning as the
desired time gap. This means that a platoon of identicakdsiand vehicles
disperses much more than observed. Moreover, not all ciineatch the desired
speed (Fig_1114(c,d)).

e If the actual gap is considerably smaller than desired (Whiay happen if an-
other vehicle cuts too close when changing lanes) the byakiaction to regain
the desired gap is exaggerated as illustrated in Problegh 11.

We will treat the first two aspects here while the third asgebich is only relevant
in multi-lane situations) will be deferred to Section 18.3.

To improve the behavior fov > vp, we require that the maximum deceleration
must not exceed the comfortable deceleratioifi there are no interactions with
other vehicles or obstacles. The paraméteshould retain its meaning also in the
new regime, i.e., leading to smooth decelerations to thedesired speed for low
values and decelerating more “robotically” for high valuEarthermore, the free
acceleration functioasee(v) should be continuously differentiable, and remain un-
changed fov < vy, i.e., afree(V) = liMs_ e &DM (S, V, AV) for v < vp. Probably the
simplest free-acceleration function meeting these carditis given by

a{l— (\);)6} if v<vp,

—b [1— (V—\?)aa/b} if v> vp.

(11.22)

To improve the behavior near the desired speed, we tightesgbond condition
in Sectior[I1.311 by requiring that the equilibrium gapv) = s*(v,0) should be
strictly equalto sp + vT for v < vo. However, we would like to implement any mod-
ification as conservatively as possible in order to presalivihe other meaningful
properties of the IDM (especially the “intelligent” brakjstrategy). Thus, changes
should only have an effect

e near the steady-state equilibrium, i.e z(i§,v,Av) = s*(v,Av) /s~ 1M
e and when driving withy &~ vg andv > vp.

We can accomplish this by distinguishing between the cases'(v,Av)/s< 1
(the actual gap is greater than the desired gapkantl. The new condition requires
&mic = O for all input values that satisf(s,v,Av) = 1 andv < vp. The other condi-
tions in Section I1.3]1 and the conditions{11.1) = (111.8)automatically satisfied
if d8mic/0z < 0, and ifdnc(2) is continuously differentiable at the transition point
z=1. Probably the simplest acceleration function that fslfdll these conditions
for v <y is given by

10 |n fact, this condition is more general since it also includestioniations of the steady state to
nonstationary situations.
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dv _ a(l—zz) Z:wzl7 1193
dt vevy | free (1—2(2a)/ af'%) otherwise. (11.23)

Forv > vy, there is no steady-state following distance, and we siropiybine the
free acceleratiorsee and the interaction accelerati@fl — 22) such that the in-
teraction vanishes far < 1 and the resulting acceleration function is continuously
differentiabld]

dv

@ (11.24)

_ ) Qreet a(l—2) z(v,Av) > 1,
V>Vo | afree otherwise.

This Improved Intelligent Driver Mode(lIDM) uses the same set of model param-
eters as the IDM and produces essentially the same behageptewhen vehicles
follow each other near the desired speed or when the velsidiester than the de-
sired speed. Simulating the standard city traffic scenaitio the IIDM shows that
all vehicles in the platoon now accelerate up to the desipeed (FigI1l7, left)
while the self-stabilizing braking strategy and the obaape of a comfortable de-
celeration are still in effect (Fig._11.7, right).

0
_sor 1IDM
£ 40t veh1 —— Gt
& 30 veh 5 £
g [ h 1 = -2
3 20 xgh 1(5) 3 1IDM
17 I o _
o veh 20 ====== g 3 b=1 m/s:
» 10 b=2 m/s’
0 - s L 4 ‘ ‘ ‘ h=4 m/s”,
0 30 60 90 120 150 0 2 4 6 8 10 12
Time (s) Time (s)

Fig. 11.7 Simulation of the city traffic scenario (left) and the situat&own in Fig[CILB (right)
using the Improved Intelligent Driver Model (IIDM) with the ganeters listed in Table 11.2.

However, the fundamental diagram is an exact triangle ndwsT simulating
highway traffic will no longer produce curved free-trafficabches in the flow-
density, speed-flow, and speed-density diagrams (continathe unmodified IDM,
cf. Fig.[TL.5). Probleri 1116 discusses an alternative cafuibés curvature.

11.3.8 Model for Adaptive Cruise Control

While ACC systems only automate the longitudinal drivinktdeey must also re-
act reasonably if the sensor input variables — the gjapd approaching ratév —
change discontinuously as a consequence of “passive” lzareges (another lane-

11 At v=vg andz > 1, the full acceleration functiof (T3] (11124) is onbntinuous, but not
differentiable with respect t@. It would require a disproportionate amount of complication to
resolve this special case of little relevance.
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changing vehicle becomes the new leader), and also “adéine’changes (the ACC
driver changes lanes manually). This means, the third o@DMedeficiencies men-
tioned in the previous Sectidn 11.8.7 — overreactions whergap decreases dis-
continuously by external actions — must be taken care of.

The reason for the overreactions is the intention of the IRKA(IIDM) devel-
opment to be accident-free even in thierst casein which the driver of the leading
vehicle suddenly brakes to a complete standstill. Howekiere are situations char-
acterized by low speed differences and small gaps wheremdmaers rely on the
fact that the drivers of preceding vehicles witht suddenly initiate full-stop emer-
gency brakings. In fact, they consider such situations aslynildly critical. As a
consequence, a more plausible and realistic driving behawil result when drivers
act according to theonstant-acceleration heurist{€ AH) rather than considering
the worst-case scenario. The CAH is based on the followiagraptions:

e The accelerations of the considered and leading vehiclenailchange in the
near future (generally a few seconds).

e No safe time gap or minimum distance is required at any givemant.

e Drivers (or ACC systems) react without delay, i.e., withazegaction time.

For actual values of the gap speeds, speedy; of the leading vehicle, and con-
stant accelerationsandy; of both vehicles, the maximum acceleration rigx=
acan that does not lead to an accident under the CAH assumptiands gy

V24,
acaH (87 VAT ) = VI2728(8:‘/—V| 20(v—v)
B 2s

if i(v—v)<-2s4,
(v=v) < —2s4 (11.25)
otherwise.

Qan

The effective acceleratioa (V) = min(v;,a) (with the maximum acceleration pa-
rametera) has been used to avoid the situation where leading vehigteshigher
acceleration capabilities may cause “drag-along effesfttfie form [11.6), or other
artefacts violating the general plausibility conditioBd.) — [I1.5). The condition
vi(v—v) = VviAv < —2sy is true if the vehicles have stopped at the time the min-
imum gaps = 0 is reached. The Heaviside step funct®x) (with ©(x) = 1 if

x > 0, and zero, otherwise) eliminates negative approachites & for the case
that both vehicles are moving at the tirtieof least distance. OtherwisE, would

lie in the past.

In order to retain all the “good” properties of the IDM, we liise the CAH
acceleration (11.25) only as amdicator to determine whether the IDM will lead to
unrealistically high decelerations, and modify the aaegien function of a model
for ACC vehicles only in this case. Specifically, the progbs€C model is based
on following assumptions:

e The ACC acceleration is never lower than that of the [IDM.sTiBimotivated by
the circumstance that the IDM and the IIDM are accident;free, sufficiently
defensive.

e If both, the IIDM and the CAH, produce the same acceleratioa, ACC accel-
eration is the same as well.
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e If the IIDM produces extreme decelerations, while the CAldlgs accelera-
tions in the comfortable range (greater thah), the situation is considered to
be mildly critical, and the resulting acceleration shoutthletweeracay — b and
acan- Only for verysmall gaps, the decelerations should be somewhat higher to
avoid an overly reckless driving style.

e Ifboth, the IIDM and the CAH, resultin accelerations sigrafitly below—b, the
situation is seriously critical and the ACC acceleratiogii®n by the maximum
of the IIDM and CAH accelerations.

e The ACC acceleration should be a continuous and differelatiunction of the
IIDM and CAH accelerations. Furthermore, it should meetdbasistency re-

quirements[(1111) £(11.5).

Probably the most simple functional form satisfying theseda is given by

aipm DM = 8CAH;
dacc = { (1—c)aupm + € [acan + btanh(2eM -2cal) | otherwise. (11.26)

This ACC modehas only one additional parameter compared to the IDM/IIDM,
the “coolness factort. Forc = 0 one recovers the IIDM while= 1 corresponds to
the “pure” ACC model. Since the pure ACC model would produceciless driving
behavior for very small gaps, a small fraction-t of the IIDM is added. It turns
out that a contribution of 1 % (correspondingcte- 0.99) gives a good compromise
between reckless and overly timid behavior in this situatidile it is essentially
irrelevant, otherwise.

In contrast to the other models of this section, the ACC mbdsltheacceler-
ation v; of the leading vehicle as additional exogenous factor ¢fessthe speed,
the speed difference, and the gap). This models a behavivlasito the human
reactions to brake lights, but in a continuous rather thamioff-on WaE

The Figs[[1118 and 1.9 show the effect of this model imprammin the mildly
critical situation of Fig[ZI1]8, a lane-changing car driyiat the same speed as the
considered car cuts in front leaving a gap of only 10 m whidess than one third
of the “safe” gapsy + vT = 35.3m. While the [IDM (and IDM) will initiate a short
emergency braking maneuver in this situation, the ACC reflaaelaxed reaction
by braking at about the comfortable deceleration. In cattiifithe situation be-
comes really critical (Fid—1119), both the (1)IDM and the @C@nodel will initiate
an emergency braking.

When implementing all these modifications, one needs to learind that, in
most situations, the ACC model should behave very similarlthe IDM so as to
retain its well-tested good properties. To verify this,.d.10 shows the familiar
fact sheefor the two standard situations. As expected, there ig litifference com-
pared to the IDM (and the IIDM) since the modified behaviolkkin only in the
highway scenario, and only at the merging region of the onpra

12 Since the acceleration cannot be measured directly, it is obtained by numerical diffgation
of the approaching rate and the speed-changing rate. Cate bagaken to control the resulting
discretization errors.
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Fig. 11.8 Response of an ACC and an IIDM vehicle (parameters of Tablé hitl2a@olness factor
¢ =0.99) to the lane-changing maneuver of another vehicle immdgiatéont of the considered
vehicle. The initial speed of both vehicles is 120 km/h (eqadhe desired speed), and the initial
gap is 10 m which is about 30 % of the desired gap. This can bedemesi as a “mildly critical”
situation.
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Fig. 11.9 Response of an ACC and an IIDM vehicle to a dangerous lane-gig@nganeuver of

a slower vehicle (speed 90 km/h) immediately in front of the comsdieehicle driving initially

at vo = 120knyh. The decelerations are restricted to & The parameters are according to
Table[TI.? and a coolness factoraf 0.99 for the ACC vehicles. The desired speed of the lane-
changing vehicle is reduced to 90 km/h.
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In summary, the ACC model can be considered as a minimal aplgrative
control model for ACC systems. With minor modifications,astheen implemented
in real cars and tested on test tracks as well as on public raxadi highways.

V (km/h)
140

Gap (m)

Distance from onramp (km)

Speed (km/h)

2500

2000

1500
1000

Flow Q (1/h)

500

Accel. (m/sz)

60
Density p (1/km) Time (s)

Fig. 11.10 Fact sheet of the ACC-model. The two standard scenarios “highfhefy) and “city
traffic” (right) are simulated with the parameter values liste@iabld-IT.P and the “coolness factor”
c=0.99. See Sectidn 10.5 for a detailed description of the simuaenarios.

Problems

11.1. Conditions for the microscopic fundamental diagram

Use the consistency conditiods (11.1Y=(11.5) to derivecthaditions [I1.l7) that
have to be fulfilled by the steady-state speed-distancéiaeles(s) (microscopic
fundamental diagram).

11.2. Rules of thumb for the safe gap and braking distance

1. A common US rule for the safe gap is the following: “Leave @ar length for
every ten miles per hour of speed”. Another rule says “Leatima gap of two
seconds”. Compare these two rules assuming a typical cgthleri 15 ft. For
which car length are both rules equivalent?

2. In Continental European countries, one learns in drigdgools the following
rule: “The safe gap should be at least half the reading of geedometer”.
Translate this rule into a safe time gap rule and compareth thie US rule
stated above. Take into account that, in Continental Eyrgpeed is commonly
expressed in terms of km per hour.
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3. A rule of thumb for the braking distance says “Speed squaral divided by
100". If speed is measured in km/h, what braking decelemasi@assumed by this
rule?

11.3. Reaction to vehicles merging into the lane

A vehicle enters the lane of the considered car causing thes ¢ga fall short of

the equilibrium gapse by 50 %. Both vehicles drive at the same speed. Find the
resulting (negative) accelerations produced by the sfiagliGipps’ model and the
IDM, assuming the parameter valuds= 1s,b = 2m/s, a= 1m/s?, = 4, and
v=\Vp/2=72km/h for all vehicles. (No other parameter values are needethi®r
problem.)

11.4. The IDM braking strategy

Derive Eq.[[Z1:IP) for the explicit description of the sedfyulating braking strategy
when approaching a standing obstadle & v). Assume that the IDM acceleration
can be reduced to the braking tews=—bZ, /b for this caseHint: Keep in mind
thats= —Av.

11.5. Analysis of a microscopic model
Assume a car-following model that is given by the followirggeleration equation:

dt 0 if v=min(vo,Vsafe), Vsate= —aT +/a?T2+ V|2 +2a(s— ).

Y a if v<min(vp,Vsafe),
—a otherwise,

As usualy; is the speed of the leading vehicle, asithe corresponding bumper-to-
bumper gap.

1. Explain the meaning of the parametarsy, vo, andT by examining (i) the accel-
eration on a free road segment, (ii) the driving behaviormtfodlowing another
vehicle with constant speed and gap, and (iii) the brakingeusaer performed
when approaching a standing vehicle.

2. Find the steady-state speegs) as a function of the distance assumwig=
20m/s,a=1m/, T = 1.6, andsy = 3m. Also, sketch the fundamental dia-
gram for vehicles of length 5m.

3. Assume that a vehicle standing at positioa O fort < 0 accelerates far> 0
and then stops at a red traffic light>at= 603 m. Derive the speed functimt)
for this scenario, assuming the parameter valges 20m/s,a=1m/>, T =0,
andsp = 3m. (Hints: The traffic light is modeled by a standing “virtleehicle;
the vehicle will reach its desired speed in this scenario.)

11.6. Heterogeneous traffic

For identical vehicles and drivers, the modified IDM withstsictly triangular fun-
damental diagram (IIDM) does not produce the pre-breakdspeed drop observed
in Fig.[T1.5. Is it possible to produce the speed drop by éhtoing a combination
of different desired speeds or the possibility of passingenaers?
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11.7. City traffic in the modified IDM (IIDM)

On aroad segment with two traffic lights, a number of vehidesanding in front of
the first traffic light. When the light turns green, the vehéchecelerate but have to
stop again at the second traffic light. The upper panel sh@jextories of all 15 ve-
hicles and the red lights (horizontal lines). The lower pahews the corresponding
speeds of the two bold trajectories.
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1. Estimate the capaciyof the free road segment (without traffic lights) by finding
the maximum possible flow.

2. How many vehicles are able to pass the traffic light at0 if the green light is
on for (i) 55, (i) 155, or (iii) 40 s? Find appropriatg and 3 such thatr(n) =
To+ Bnis the time the light has to be green totetehicles pass.

3. Estimate the velocitgcong Of the transition “standing traffic’— “starting to
move” from the shown trajectories.

4. Estimate the IDM parametevs, lef = | + S0, T = 1/(PmaxCcong), &, andb used
in the simulation. Add appropriate tangents to the speegralina to find the ac-
celerations.

Further Reading

e Gipps, P.G.: A behavioural car-following model for compignulation. Trans-
portation Research Part B: Methodologital(1981) 105-111

e Krauss, S.: Microscopic Modeling of Traffic Flow: Investiggm of Collision
Free Vehicle Dynamics. Ph.D. Thesis, University of Colggb@ogne, Germany
(1997)

e Treiber, M., Hennecke, A., Helbing, D.: Congested traffigtas in empirical
observations and microscopic simulations. Physical Re#&2 (2000) 1805—
1824



204 11 Car-Following Models based on Driving Strategies

e Kesting, A., Treiber, M., Helbing, D.: Enhanced Intelligédriver Model to ac-
cess the impact of driving strategies on traffic capacityutitions. Philosophical
Transactions of the Royal Society368(2010) 4585-4605
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Subproblem 3 (emergency braking)t first, we determine the initial distance such
that a driver driving at; = 50km/h just manages to stop before hitting the child:

S(0) = Sstop(V1) = 25.95m

Now we consider a speeg = 70km/h but the same initial distans€0) = 25.95m
as calculated above. At the end of the reaction time, thel ¢hjust

s(Ty) = s(0) — voT, = 6.50m

away from the front bumper. Now, the driver would need theitémtthl braking
distancesg(v2) = 23.6 m for a complete stop. However, only 6.50 m are available
resulting in a differencéds= 17.13m. With this information, the speed at collision
can be calculated by solvinys = (As)g(V) = V?/(20max) for v, i.e.,

Veoll = V/ 2bmaxds= 16.56 m/s = 59.6 km/h.

Remark:This problem stems from a multiple-choice question of theothtical
exam for a German driver’s licence. The official answer is @0k

Problems of Chapter[11

[T Conditions for the microscopic fundamental diagram. The plausibility
condition [I1.5) is valid for any speed of the leading vehicle. This also includes
standing vehicles where E@._(1IL.5) becoragg(s,0,0) = 0 for s < 5. This corre-
sponds to the steady-state conditigfs) = 0 for s < .

Conditions [TT1) and(11.2) are valid for any spegadf the leader as well,
including the steady-state situatign= v or Av= 0. For the alternative acceleration
functiond(s,v, Av), this means

04(s,v,0) <

94(s,v,0)
ds 20,

ov

<0.

Along the one-dimensional manifold of steady-state sohg{ve(s)} for se [0, o],
we havea(s, ve(s),0) = 0, so the differential changeadong the equilibrium curve
Ve(S) must vanish as well:

04(s,Ve(s),0) 04(s,Ve(s),0)

da= s ds+ Sy V,(s)ds=0,
hence Pa(s.0)/0
—04(s,v. s
— ) > .
Vel 0a(s,v,0)/0v — 0



460 Solutions to the Problems

If the leading vehicle is outside the interaction range, \&eehv,(s) = 0 (second
condition of Eq.[(I1.R)). Finally, the conditiosglim(s) = vp follows directly from

the second part of condition (11.1).
[II.2 Rules of thumb for the safe gap and braking distance

Subproblem 1.0ne mile corresponds to 1.609 km. However, the US rule dokes no
give explicit values for a vehicle length. Here, we assumi £54.572m. In any
case, the gapincreases linearly with the speegdso the time gaf = s/v s inde-
pendent of speed. Implementing this rule, we obtain

p_sS_ 1sft _ 4s72m _ 4572m _,
v 10mph 1609km/h  4.469nys

Notice that, in the final result, we rounded off generousligeAall, this is a rule of
thumb and more significant digits would feign a non-exisma‘cisiorﬂ Notice that
this rule is consistent with typically observed gaps (cf).E.8).

Subproblem 2.Here, the speedometer reading is in units of km/h, and theeyap
is in units of meters. Again, the quotient, i.e., the time @ais constant and given
by (watch out for the units)

1_S_3M(gmn) _ 3m _ 05h _1800s_

v v kmh 1000 1000 -®S

Subproblem 3.The kinematicbraking distancés s(v) = v2/(2b), so the cited rule
of thumb implies that the braking deceleration does not dejo& speed. By solving
the kinematic braking distance forand inserting the rule, we obtain (again, watch
out for the units)

2 2
b Vv V2 (km) 50

For reference, comfortable decelerations are belows mhile emergency braking
decelerations on dry roads with good grip conditions canéeoul0nys?, about
6m/s? for wet conditions, and less than 2& for icy conditions. This means, the
above rule could lead to accidents for icy conditions bukeyp otherwise.

[II.3 Reaction to vehicles merging into the lane
Reaction for the IDM.Forv = vp/2, the IDM steady-state space gap reads

Vol

S+VT S+

() V-’

" There is also a more conservative variant of this rule where amgléteave one car length every
five mph corresponding to the “two-second rule*= 2.0s.

So(v) =
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The prevailing contribution comes from the prescribed theadway (foisg = 2m
and o = 4, the other contributions only make up about 10 %). This j@mbas-
sumes that the merging vehicle reduces the gap to the coedif@lower to half
the steady-state gap= s¢/2 = Vo T /4, while the speed difference remain zero. The
new IDM acceleration of the follower (wita= 1m/s? andd = 4) is therefore

w )]
e () (28]

o
=V==0/2) g [1 <1> ] = —% m/s? = —2.81m/<.

2

Reaction for the simplified Gipps’ modekor this model, the steady-state gap in the
car-following regime reads;(v) = vAt. Again, at the time of merging, the merging
vehicle has the same speef2 as the follower, and the gap is half the steady-state
gap,s= (VAt)/2 = vpAt/4. The new speed of the follower is restricted by the safe
speedvsafe

2 bwAt
VO) + i =19.07m/s.

V(t +At) = Vsate= —bAt + \/bz(At)z—i— (E 5

This results in an effective acceleration

dv V(A —v(t)
(dt)Gipps_ — —~0.93m/<%.

We conclude that the Gipps’ model describes a more relaxgdrdeaction com-

pared to the IDM. Notice that both the IDM and Gipps’ model \dogenerate sig-

nificantly higher decelerations for the case of slower legdiehicles (dangerous
situation).

[II4 The IDM braking strategy. A braking strategy is self-regulating if, dur-
ing the braking process, thdnematically necessary deceleratiog,b= v?/(25)
approaches the comfortable deceleratioin order to show this, we calculate the
rate of change of the kinematic deceleration (applying thatignt and chain rules
of differentiation when necessary) and set ~v andv = —bZ, /b = —*/(4bs),
afterwards. This eventually gives EQ. (11.19) of the mait: te

dt dt
V3<1 V2>VbKin

dbyin _ d /V2 _ 4vsy — 2v2$
2s

dt 452

=22 \1725) = ~sp (P Bun);
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[T Analysis of a microscopic model

Subproblem 1 (parameters)or interaction-free accelerationggse > Vo, SO Vsage
is not relevant. Hencgp denotes the desired speed, amthe absolute value of
the acceleration and deceleration for the cases/q andv > vy, respectively. The
steady-state conditiorss= const. and/ = v; = Vg = const. give

Ve = MIN(Vo, Vsafe)-

Without interactionysafe > Vo, SOVe = V. With interactions, the safe speed becomes
relevant and the above condition yields

Ve = Vsafe= —aT + \/aZT2 +V3+2a(s— %)
which can be simplified to
S=5+ Vel.

Thus, s is the minimum gap fow = 0, andT the desired time gap. The model
produces a decelerationa not only if v > vy (driving too fast in free traffic) but
also if v > vgare (driving too fast in congested situations). Furthermaohne, hodel
is symmetrical with respect to accelerations and decéeatObviously, it is not
accident free.

Subproblem 2 (steady-state speeW)e have already derived the steady-state con-

dition
Ve(S) = min (vo, Sfrso) .

Macroscopically, this corresponds to the triangular fundatal diagram

Qe(p) = min (Vol% L pleﬁ)

T

wherelef = 1/pmax = | + S. The capacity per lane is given @max = (T +
lett/Vo) "+ = 1800vehiclegh at a densityoc = 1/(leff + VoT) = 25/km. For fur-
ther properties of the triangular fundamental diagram S=siorf 8.5.

Subproblem 3.The acceleration and braking distances to accelerate fram 0
20m/s or to brake from 201fs to O, respectively, are the same:

v5
sa_so_%_ZOOm

At a minimum gap of 3m and the locatio@p = 603m of the stopping line of
the traffic light, the acceleration takes place fram= 0 to x; = 200m, and the
deceleration fromx, = 400m toxs = 600 m. The duration of the acceleration and
deceleration phases ig/a = 20s while the time to cruise the remaining stretch
of 200 m atvp amounts to 10s. This completes the information to mathealati
describe the trajectory:
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1at? t<t;=20s
X(t) = ¢ X1+ Vvo(t—tz) 11 <t<tp,=30s
X2 +Vo(t—to) — 3a(t—1)? th<t<t3=50s

wheret; = 20s,t, = 30s andz = 50s.

[I1.8 Heterogeneous traffic.The simultaneous effects of heterogeneous traffic and
several lanes with lane-changing and overtaking pos#siliesults in a curved free
part of the fundamental diagram even for models that wousghldy a triangular
fundamental diagram for identical vehicles and drivergii@dmproved Intelligent
Driver Model, IIDM). This can be seen as follows: For hetanogous traffic, each
vehicle-driver class has a different fundamental diagRanticularly, the densitgc
at capacity is different for each class, so a simple weightedage of the individual
fundamental diagrams would result in a curved free part adiaded peak. How-
ever, without lane-changing and overtaking possibiljtedsvehicles would queue
up behind the vehicles of the slowest class resulting inaagitt free part of the fun-
damental diagram with the gradient representing the IoWeetspee. So, both
heterogeneity and overtaking possibilities are necedsapyroduce a curved free
part of the fundamental diagram.

[I17 City traffic in the improved IDM
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1. For realistic circumstances, the maximum possible flogiien by thedynamic
capacity, i.e., the outflow from moving downstream congaesfronts. In our
case, the “congestion” is formed by the queue of standinglehbehind a traffic
light. Counting the trajectories (horizontal double-arrim the upper diagram)
yields

9vehicles

C = Qmax~ 20s

= 1620vehiclegh.

8 Even when obstructed, drivers can choose their preferredmyapritrast to the desired speed), so
the congested branch of the fundamental diagram is curvedvatleout overtaking possibilities.
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2. Counting the trajectories passing= 0 for times less than 5s, 15s, and 40s
(black bullets in the upper diagram) gives

n(5) = 1, n(15) = 5, n(40) = 15,

respectively. We determingby the average time headway after the first vehicles
have passed,
1 40s-15s
p= C 15-5
We observe, thgd denotes the inverse of the capacity. The obtained valueagre
with the result of the first subproblem within the “measurungcertainty” of
one vehicld] This also gives thadditional timeuntil the first vehicle passes:
7o = 15s— 5B = 2.5s. (Notice that this isiot a reaction time since the [IDM
does not have one.)
3. The propagation velocity of the position of the startimdicles in the queue is
read off from the upper diagram:

= 2.5s/vehicles

4. We estimate the desired speed by the maximum speed of ezl qpofile
(lower diagram):vp = 15m/s = 54km/h. The effective lengthess is equal to
the distance between the standing vehicles in the upperatia@max = 1/lesf =
10vehicleg100m= 100vehiclegkm, i.e.,leff = 10m. Since the steady state of
this model corresponds to a triangular fundamental diagthmtime gap pa-
rameterT is determined by the propagation speed and the maximumtgensi
T = —lesr/c = 2. Finally, the maximum acceleratiarand the comfortable de-
celerationb can be read off the lower diagram by estimating the maximudh an
minimum gradient of the speed profile:

~ 20m/s ~ 20m/s
= o =2m/<, b= =29m/s.
Problems of Chapter[12

[I21 Statistical properties of the Wiener process.To determine the expectation
(w(t)w(t")) from the given formal solutiomv(t) to the stochastic differential equa-
tion of the Wiener process, we insert the formal solutioo ifwe(t)w(t")) carefully
distinguishing the argumentsndt’ from the formal integration variablésandts.
This gives the double integral

9 One could have calculatgdlas well using the pairgn(15),n(5)} or {n(40),n(5)} with similar
results.



